Workshop on Mathematical Machine Learning and Application
数学机器学习与应用研讨会
基本信息
- 批准号:2020623
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports participation in the 2020 Workshop on Mathematical Machine Learning and Application held at Penn State University on April 26-29, 2020. The workshop aims to bring together active scientists in the emerging field of data science to discuss recent advances in the study of algorithm development, theoretical analysis, and applications of machine learning. One focus of the workshop is on theoretical understanding of why and how deep learning works from mathematical viewpoints. This grant provides supports of participation of US-based invited speakers and US-based junior participants (graduate students, postdocs and early career researchers who lack their own funding). The main session of the workshop will take place during the period from April 27 to 29, with about 20 invited talks and a poster session. A short course featuring introductory lectures on the mathematics of deep learning will be held prior to the workshop on Sunday, April 26, with junior participants as the main target audience.In this workshop, researchers in mathematical machine learning and related fields from the United States and other countries around the world will discuss state-of-the-art methodologies and developments and propose future directions in mathematical data science and its applications. Examples of topics to be discussed in the workshop include: machine learning in physical modeling and computational engineering, non-convex optimization in machine learning, approximation theory of deep neural networks, interactions between deep learning and partial differential equations, architecture design and interpretation of convolutional neural networks, deep learning in computer vision and natural language processing, and deep learning with grammars, automata, and rules. More details of this workshop are available at https://ccma.math.psu.edu/2020workshop/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持参加2020年4月26日至29日在宾夕法尼亚州立大学举行的2020年数学机器学习和应用研讨会。研讨会旨在将新兴数据科学领域的活跃科学家聚集在一起,讨论机器学习在算法开发、理论分析和应用方面的最新进展。研讨会的重点之一是从数学的角度从理论上理解深度学习为什么以及如何起作用。这笔赠款为在美国的特邀演讲者和在美国的初级参与者(没有自己资金的研究生、博士后和早期职业研究人员)的参与提供支持。研讨会的主要环节将在4月27日至29日期间举行,约有20次受邀演讲和一次海报展示环节。在四月二十六日(星期日)工作坊举行前,将会举办一个介绍深度学习数学的短期课程,主要对像是青少年学员。在这个工作坊中,来自美国和世界其他国家的数学机器学习及相关领域的研究人员将讨论最新的方法和发展,并提出数学数据科学及其应用的未来发展方向。研讨会将讨论的主题包括:物理建模和计算工程中的机器学习,机器学习中的非凸优化,深度神经网络的逼近理论,深度学习和偏微分方程之间的相互作用,卷积神经网络的体系结构设计和解释,计算机视觉和自然语言处理的深度学习,以及语法、自动机和规则的深度学习。该研讨会的更多细节可在https://ccma.math.psu.edu/2020workshop/.This获得,该奖项反映了国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinchao Xu其他文献
span style=line-height:150%;font-family:Times New Roman;font-size:12pt;A discontinuous Galerkin method for the fourth order Curl problem/span
求解四阶Curl问题的间断伽辽金法
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Qingguo Hong;Jun Hu;Shi Shu;Jinchao Xu - 通讯作者:
Jinchao Xu
Extended Regularized Dual Averaging Methods for Stochastic Optimization
用于随机优化的扩展正则化双平均方法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jonathan W. Siegel;Jinchao Xu - 通讯作者:
Jinchao Xu
<span style="line-height:150%;font-family:'Times New Roman';font-size:12pt;">Two-grid Methods for Time-harmonic Maxwell Equations</span>
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:
- 作者:
Liuqiang Zhong;Shi Shu;Junxian Wang;Jinchao Xu; - 通讯作者:
Surges generated by water export from an impounded channel
从蓄水渠道排水所产生的涌浪
- DOI:
10.1016/j.oceaneng.2025.121160 - 发表时间:
2025-06-15 - 期刊:
- 影响因子:5.500
- 作者:
Feidong Zheng;Qiang Liu;Xueming Wu;Xiaofen Liu;Shuai Zhang;Jinchao Xu;Xueyi Li - 通讯作者:
Xueyi Li
Efficient degradation of methylene blue at near neutral pH based on heterogeneous Fenton-like system catalyzed by Fe<sub>2</sub>O<sub>3</sub>/MnO<sub>2</sub>
- DOI:
10.1016/j.rechem.2024.101795 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Tie Geng;Jiaguo Yan;Bin Li;Haiyuan Yan;Lei Guo;Qiang Sun;Zengfu Guan;Chunning Zhao;Jinchao Xu;Weichao Wang - 通讯作者:
Weichao Wang
Jinchao Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinchao Xu', 18)}}的其他基金
US Participation at the Twenty-sixth Internaltional Domain Decomposition Conference
美国参加第二十六届国际域分解会议
- 批准号:
1930036 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Multigrid Methods and Machine Learning
多重网格方法和机器学习
- 批准号:
1819157 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Integrated Geometric and Algebraic Multigrid Methods
综合几何和代数多重网格方法
- 批准号:
1522615 - 财政年份:2015
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Single-grid Multi-level Solvers for Coupled PDE Systems
耦合偏微分方程系统的单网格多级求解器
- 批准号:
1217142 - 财政年份:2012
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
User-Friendly Solvers and Solver-Friendly Discretizations
用户友好的求解器和求解器友好的离散化
- 批准号:
0915153 - 财政年份:2009
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
SCREMS: Scientific Computing Environments for Mathematical Sciences
SCEMS:数学科学的科学计算环境
- 批准号:
0619587 - 财政年份:2006
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Adaptive Multigrid Methods for a Multiphase Fuel Cell Model
多相燃料电池模型的自适应多重网格方法
- 批准号:
0609727 - 财政年份:2006
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Mathematical and Computational Studies of Fuel Cell Dynamics
燃料电池动力学的数学和计算研究
- 批准号:
0308946 - 财政年份:2005
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Scientific Computing Research Environments for the Mathematical Sciences
数学科学的科学计算研究环境
- 批准号:
0215392 - 财政年份:2002
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Multiscale Methods for Partial Differential Equations
偏微分方程的多尺度方法
- 批准号:
0209497 - 财政年份:2002
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
相似海外基金
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
- 批准号:
2420029 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Research Initiation Award: Uncovering and Extracting Biological Information from Nanopore Long-read Sequencing Data with Machine Learning and Mathematical Approaches
研究启动奖:利用机器学习和数学方法从纳米孔长读长测序数据中发现和提取生物信息
- 批准号:
2300445 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Data-Driven Scheduling of Orthopaedic Surgical Services: An End-to-End Framework with Machine Learning and Mathematical Optimization
数据驱动的骨科手术服务调度:具有机器学习和数学优化的端到端框架
- 批准号:
490488 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Operating Grants
Modelling, predicting and risk assessment of mpox (monkeypox) and other (re)emerging zoonotic threats to inform decision-making and public health actions: mathematical, geospatial and machine learning approaches
对mpox(猴痘)和其他(重新)出现的人畜共患威胁进行建模、预测和风险评估,为决策和公共卫生行动提供信息:数学、地理空间和机器学习方法
- 批准号:
481139 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Operating Grants
The Development of Mathematical Models using Machine Learning with Educational Big Data for Language Acquisition and Individually Optimized Learning
利用机器学习和教育大数据开发数学模型,用于语言习得和个体优化学习
- 批准号:
23K00651 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
- 批准号:
2306769 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Physical, Mathematical, and Machine Learning Modeling of Iron and Steel Processes
钢铁工艺的物理、数学和机器学习建模
- 批准号:
RGPIN-2021-02615 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Integrable Probability and Universality in Mathematical Physics and Machine Learning
数学物理和机器学习中的可积概率和普适性
- 批准号:
RGPIN-2022-04106 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Integrable Probability and Universality in Mathematical Physics and Machine Learning
数学物理和机器学习中的可积概率和普适性
- 批准号:
DGECR-2022-00450 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Launch Supplement
Constructing mathematical foundation in interdisciplinary field of optics and machine learning
构建光学与机器学习跨学科领域的数学基础
- 批准号:
22K19787 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)