Single-grid Multi-level Solvers for Coupled PDE Systems
耦合偏微分方程系统的单网格多级求解器
基本信息
- 批准号:1217142
- 负责人:
- 金额:$ 45.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to develop and study a special class of multilevel methods that combine techniques from the Geometric Multigrid (GMG) and Algebraic Multigrid (AMG) methodologies, which we refer to as the "single-grid multilevel method" (SGML). The focus is discretized partial differential equations, for which detailed information on the underlying geometric grid is generally available to the user. The research team is designing solvers that use information from the finest grid (hence termed the single-grid method) to select a simple and fixed coarsening that allows for explicit control of the overall grid and operator complexities of the multilevel solver. The central new idea that we are investigating concerns the design and analysis of algorithms for adaptive construction of the MG relaxation scheme when used as a smoother. In contrast to existing AMG methods, in which the smoother is fixed and coarsening is the key component in the setup phase, SGML will construct the smoother in the setup phase to complement its simple geometry-based coarsening process. It should be noted that the algebraic construction of the smoother can also benefit from using properties of the geometric grid, for example, to obtain a suitable partitioning of the unknowns in parallel. The SGML approach (together with the many of the promising algebraic techniques for constructing the MG interpolations developed over the last decade) is also under consideration. The PI and co-PIs, though, are focusing on the SGML method because of its ability to explicitly control complexity, which in turn allows for (nearly) optimal load balancing and predictable communication patterns, such that the method is well suited for parallel computing. Overall, the iterative solvers under development are designed to be implemented in open source parallel codes and made available to the scientific computing community. This will provide a computational framework for future algorithm research and development in related areas as well as powerful tools for simulation. In summary, the proposed methodology constructs solvers using all the information available to increase the efficiency of numerical modeling and simulation of physical phenomena on parallel multi-core computing architectures. Educational activities include the training of graduate students.
该项目的目的是开发和研究一类特殊的多级方法,这些方法结合了几何多机(GMG)和代数多式(AMG)方法论,我们将其称为“单网格多级方法”(SGML)。焦点是离散的部分微分方程,对于用户,有关基础几何网格的详细信息通常可供用户使用。研究团队正在设计使用最优质网格(因此称为单网格方法)的信息来选择简单固定的粗化,从而可以明确控制多级求解器的整体网格和操作员的复杂性。我们正在调查的主要新想法涉及算法的设计和分析,用于自适应构建MG松弛方案时,将其用作更平滑。与现有的AMG方法相反,在设置阶段中,固定更平稳而固定是关键组成部分,SGML将在设置阶段构建更平滑的内容,以补充其简单的基于几何基于基于几何的粗糙过程。应当指出的是,更平滑的代数构造也可以从使用几何网格的属性中受益,例如,在并行中获得适当的未知数分区。 SGML方法(以及许多有希望的代数技术用于构建过去十年中开发的MG插值)。但是,PI和CO-PIS的重点是SGML方法,因为它具有明确控制复杂性的能力,进而允许(几乎)最佳的负载平衡和可预测的通信模式,因此该方法非常适合并行计算。总体而言,正在开发的迭代求解器以开源并行代码实现,并提供给科学计算社区。这将为未来的算法研究和开发提供一个计算框架,并为模拟的强大工具提供了一个计算框架。总而言之,所提出的方法使用所有可用的信息来构建求解器,以提高并行多核计算体系结构上物理现象的数值建模效率和仿真。教育活动包括对研究生的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinchao Xu其他文献
Extended Regularized Dual Averaging Methods for Stochastic Optimization
用于随机优化的扩展正则化双平均方法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jonathan W. Siegel;Jinchao Xu - 通讯作者:
Jinchao Xu
span style=line-height:150%;font-family:Times New Roman;font-size:12pt;A discontinuous Galerkin method for the fourth order Curl problem/span
求解四阶Curl问题的间断伽辽金法
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Qingguo Hong;Jun Hu;Shi Shu;Jinchao Xu - 通讯作者:
Jinchao Xu
Ubiquitin-Mediated Degradation of MORF4L1 By FBXO11 Suppresses Cholesterol Biosynthesis in T Cell Acute Lymphoblastic Leukemia
- DOI:
10.1182/blood-2023-184388 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Ye Xin;Xiaowen Chen;Mengli Zhang;Yingcai Jin;Jinchao Xu;Jianxiang Zhang;Xinfeng Chen;Xue Yang;Madeline Niederkorn;Feiqiu Wen;Peng Xu - 通讯作者:
Peng Xu
A new adaptive local mesh refinement algorithm and its application on fourth order thin film flow problem
- DOI:
10.1016/j.jcp.2006.11.005 - 发表时间:
2007-06-10 - 期刊:
- 影响因子:
- 作者:
Pengtao Sun;Robert D. Russell;Jinchao Xu - 通讯作者:
Jinchao Xu
Efficient degradation of methylene blue at near neutral pH based on heterogeneous Fenton-like system catalyzed by Fe<sub>2</sub>O<sub>3</sub>/MnO<sub>2</sub>
- DOI:
10.1016/j.rechem.2024.101795 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Tie Geng;Jiaguo Yan;Bin Li;Haiyuan Yan;Lei Guo;Qiang Sun;Zengfu Guan;Chunning Zhao;Jinchao Xu;Weichao Wang - 通讯作者:
Weichao Wang
Jinchao Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinchao Xu', 18)}}的其他基金
Workshop on Mathematical Machine Learning and Application
数学机器学习与应用研讨会
- 批准号:
2020623 - 财政年份:2020
- 资助金额:
$ 45.04万 - 项目类别:
Standard Grant
US Participation at the Twenty-sixth Internaltional Domain Decomposition Conference
美国参加第二十六届国际域分解会议
- 批准号:
1930036 - 财政年份:2019
- 资助金额:
$ 45.04万 - 项目类别:
Standard Grant
Multigrid Methods and Machine Learning
多重网格方法和机器学习
- 批准号:
1819157 - 财政年份:2018
- 资助金额:
$ 45.04万 - 项目类别:
Continuing Grant
Integrated Geometric and Algebraic Multigrid Methods
综合几何和代数多重网格方法
- 批准号:
1522615 - 财政年份:2015
- 资助金额:
$ 45.04万 - 项目类别:
Continuing Grant
User-Friendly Solvers and Solver-Friendly Discretizations
用户友好的求解器和求解器友好的离散化
- 批准号:
0915153 - 财政年份:2009
- 资助金额:
$ 45.04万 - 项目类别:
Standard Grant
SCREMS: Scientific Computing Environments for Mathematical Sciences
SCEMS:数学科学的科学计算环境
- 批准号:
0619587 - 财政年份:2006
- 资助金额:
$ 45.04万 - 项目类别:
Standard Grant
Adaptive Multigrid Methods for a Multiphase Fuel Cell Model
多相燃料电池模型的自适应多重网格方法
- 批准号:
0609727 - 财政年份:2006
- 资助金额:
$ 45.04万 - 项目类别:
Continuing Grant
Mathematical and Computational Studies of Fuel Cell Dynamics
燃料电池动力学的数学和计算研究
- 批准号:
0308946 - 财政年份:2005
- 资助金额:
$ 45.04万 - 项目类别:
Standard Grant
Scientific Computing Research Environments for the Mathematical Sciences
数学科学的科学计算研究环境
- 批准号:
0215392 - 财政年份:2002
- 资助金额:
$ 45.04万 - 项目类别:
Standard Grant
Multiscale Methods for Partial Differential Equations
偏微分方程的多尺度方法
- 批准号:
0209497 - 财政年份:2002
- 资助金额:
$ 45.04万 - 项目类别:
Standard Grant
相似国自然基金
多参数可变网格超声导波全波反演成像理论及方法研究
- 批准号:12374431
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
基于非规则网格的地震体波走时、面波频散和多频接收函数联合反演方法研究及应用
- 批准号:42304070
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于结构语义感知和多视角投影优化的高精度手部网格重建研究
- 批准号:62366018
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
多场耦合下形状记忆聚合物大变形分析的高效高精度无网格方法
- 批准号:12271341
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
全球多尺度碳核算网格化方法体系研究
- 批准号:42271426
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Highly Compact, Multi-port, GaN-Based Grid-Forming Inverter
合作研究:高度紧凑、多端口、基于 GaN 的并网逆变器
- 批准号:
2227160 - 财政年份:2023
- 资助金额:
$ 45.04万 - 项目类别:
Standard Grant
Collaborative Research: Highly Compact, Multi-port, GaN-Based Grid-Forming Inverter
合作研究:高度紧凑、多端口、基于 GaN 的并网逆变器
- 批准号:
2227161 - 财政年份:2023
- 资助金额:
$ 45.04万 - 项目类别:
Standard Grant
FPGA-based Real-time Simulation of Grid-Connected Distributed Solar Systems using Multi-Agent Control
基于 FPGA 的多智能体控制并网分布式太阳能系统实时仿真
- 批准号:
RGPIN-2022-03004 - 财政年份:2022
- 资助金额:
$ 45.04万 - 项目类别:
Discovery Grants Program - Individual
De-risking multi terminal control for multi-vendor HVDC grid
消除多供应商 HVDC 电网的多终端控制风险
- 批准号:
2879082 - 财政年份:2022
- 资助金额:
$ 45.04万 - 项目类别:
Studentship
Meshed Multi-Terminal Direct Current (MMTDC) Grid Protection and Control
网状多端直流 (MMTDC) 电网保护和控制
- 批准号:
RGPIN-2016-05495 - 财政年份:2022
- 资助金额:
$ 45.04万 - 项目类别:
Discovery Grants Program - Individual