Multigrid Methods and Machine Learning
多重网格方法和机器学习
基本信息
- 批准号:1819157
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to merge advanced tools from multigrid (MG) methods and machine learning (ML) towards the development of a novel class of numerical techniques targeting the data intensive applications emerging in physical, biological and social sciences. Multigrid methods, including both geometric and algebraic multigrid (GMG and AMG) methods, are effective tools for solving linear as well as nonlinear algebraic system of equations arising from scientific and engineering computing. On the other hand, there is a significant advancement in machine learning (ML) techniques, especially convolutional neural networks (CNN), which have successful applications in many areas such as image classification and processing. The proposed project is to explore the resemblances and differences between these two different technologies so that more efficient multigrid methods as well more efficient deep learning models are developed. The existing rich theory of multigrid method is expected to shed new light to the theoretical understanding of deep neural networks whereas the numerous empirical techniques used in the vast and ever-growning deep learning literature can be used to design general multigrid methods with wider range of applications. This interdisciplinary research project is expected to have a direct impact to both the scientific computing community and the artificial intelligence industry.More specifically, MG and CNN are similar for the use of multilevel hierarchy and the use of many technical components such as smoothers (MG) versus convolutions (CNN), restriction (MG) versus convolution with stride (CNN). But they also have some major differences: CNN has multiple channels of convolutions to be trained whereas MG often has one single smoother given a priori. Such relationships motivate the design of new multigrid methods with more general smoothers and restrictions that are subject training in different ways and, as a result, multigrid methods will become more adaptive and robust in its application to different practical problems. The well-understood MG structure and theory can be adapted to understand and improve the existing deep learning model such as residual neural networks. Furthermore, multilevel iterative techniques used in MG will also be investigated to speed up the stochastic gradient descent method that is now the standard training algorithm for most deep neural networks in machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是将多重网格(MG)方法和机器学习(ML)的高级工具合并到一类新的数值技术的开发中,这些技术针对物理,生物和社会科学中出现的数据密集型应用。 多重网格方法,包括几何多重网格方法和代数多重网格方法(GMG和AMG),是求解科学和工程计算中的线性和非线性代数方程组的有效工具。 另一方面,机器学习(ML)技术取得了重大进展,特别是卷积神经网络(CNN),它在图像分类和处理等许多领域都有成功的应用。 该项目旨在探索这两种不同技术之间的相似性和差异,以便开发更有效的多重网格方法以及更有效的深度学习模型。 现有的丰富的多重网格方法理论有望为深度神经网络的理论理解提供新的思路,而大量不断增长的深度学习文献中使用的众多经验技术可用于设计具有更广泛应用的通用多重网格方法。 这个跨学科的研究项目预计将对科学计算社区和人工智能行业产生直接影响。更具体地说,MG和CNN在使用多级层次结构和使用许多技术组件方面是相似的,例如平滑器(MG)与卷积(CNN),限制(MG)与步幅卷积(CNN)。但它们也有一些主要的区别:CNN有多个卷积通道要训练,而MG通常只有一个先验平滑器。这种关系促使设计新的多重网格方法,更一般的平滑和限制,以不同的方式进行主题训练,因此,多重网格方法将变得更加适应和强大的应用到不同的实际问题。 已经被充分理解的MG结构和理论可以被用来理解和改进现有的深度学习模型,如残差神经网络。 此外,还将研究MG中使用的多级迭代技术,以加快随机梯度下降方法,该方法现在是机器学习中大多数深度神经网络的标准训练算法。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A posteriori error estimates of finite element methods by preconditioning
- DOI:10.1016/j.camwa.2020.08.001
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Yuwen Li;L. Zikatanov
- 通讯作者:Yuwen Li;L. Zikatanov
Residual-based a posteriori error estimates of mixed methods for a three-field Biot’s consolidation model
- DOI:10.1093/imanum/draa074
- 发表时间:2019-11
- 期刊:
- 影响因子:2.1
- 作者:Yuwen Li;L. Zikatanov
- 通讯作者:Yuwen Li;L. Zikatanov
Robust Preconditioners for a New Stabilized Discretization of the Poroelastic Equations
用于多孔弹性方程新稳定离散化的鲁棒预条件子
- DOI:10.1137/19m1261250
- 发表时间:2020
- 期刊:
- 影响因子:3.1
- 作者:Adler, J. H.;Gaspar, F. J.;Hu, X.;Ohm, P.;Rodrigo, C.;Zikatanov, L. T.
- 通讯作者:Zikatanov, L. T.
Discrete trace theorems and energy minimizing spring embeddings of planar graphs
平面图的离散迹定理和能量最小化弹簧嵌入
- DOI:10.1016/j.laa.2020.08.035
- 发表时间:2021
- 期刊:
- 影响因子:1.1
- 作者:Urschel, John C.;Zikatanov, Ludmil T.
- 通讯作者:Zikatanov, Ludmil T.
Uniform Stability and Error Analysis for Some Discontinuous Galerkin Methods
- DOI:10.4208/jcm.2003-m2018-0223
- 发表时间:2018-05
- 期刊:
- 影响因子:0.9
- 作者:Q. Hong;Jinchao Xu
- 通讯作者:Q. Hong;Jinchao Xu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinchao Xu其他文献
span style=line-height:150%;font-family:Times New Roman;font-size:12pt;A discontinuous Galerkin method for the fourth order Curl problem/span
求解四阶Curl问题的间断伽辽金法
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Qingguo Hong;Jun Hu;Shi Shu;Jinchao Xu - 通讯作者:
Jinchao Xu
Extended Regularized Dual Averaging Methods for Stochastic Optimization
用于随机优化的扩展正则化双平均方法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jonathan W. Siegel;Jinchao Xu - 通讯作者:
Jinchao Xu
<span style="line-height:150%;font-family:'Times New Roman';font-size:12pt;">Two-grid Methods for Time-harmonic Maxwell Equations</span>
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:
- 作者:
Liuqiang Zhong;Shi Shu;Junxian Wang;Jinchao Xu; - 通讯作者:
Surges generated by water export from an impounded channel
从蓄水渠道排水所产生的涌浪
- DOI:
10.1016/j.oceaneng.2025.121160 - 发表时间:
2025-06-15 - 期刊:
- 影响因子:5.500
- 作者:
Feidong Zheng;Qiang Liu;Xueming Wu;Xiaofen Liu;Shuai Zhang;Jinchao Xu;Xueyi Li - 通讯作者:
Xueyi Li
Efficient degradation of methylene blue at near neutral pH based on heterogeneous Fenton-like system catalyzed by Fe<sub>2</sub>O<sub>3</sub>/MnO<sub>2</sub>
- DOI:
10.1016/j.rechem.2024.101795 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Tie Geng;Jiaguo Yan;Bin Li;Haiyuan Yan;Lei Guo;Qiang Sun;Zengfu Guan;Chunning Zhao;Jinchao Xu;Weichao Wang - 通讯作者:
Weichao Wang
Jinchao Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinchao Xu', 18)}}的其他基金
Workshop on Mathematical Machine Learning and Application
数学机器学习与应用研讨会
- 批准号:
2020623 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
US Participation at the Twenty-sixth Internaltional Domain Decomposition Conference
美国参加第二十六届国际域分解会议
- 批准号:
1930036 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Integrated Geometric and Algebraic Multigrid Methods
综合几何和代数多重网格方法
- 批准号:
1522615 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Single-grid Multi-level Solvers for Coupled PDE Systems
耦合偏微分方程系统的单网格多级求解器
- 批准号:
1217142 - 财政年份:2012
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
User-Friendly Solvers and Solver-Friendly Discretizations
用户友好的求解器和求解器友好的离散化
- 批准号:
0915153 - 财政年份:2009
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
SCREMS: Scientific Computing Environments for Mathematical Sciences
SCEMS:数学科学的科学计算环境
- 批准号:
0619587 - 财政年份:2006
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Adaptive Multigrid Methods for a Multiphase Fuel Cell Model
多相燃料电池模型的自适应多重网格方法
- 批准号:
0609727 - 财政年份:2006
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Mathematical and Computational Studies of Fuel Cell Dynamics
燃料电池动力学的数学和计算研究
- 批准号:
0308946 - 财政年份:2005
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Multiscale Methods for Partial Differential Equations
偏微分方程的多尺度方法
- 批准号:
0209497 - 财政年份:2002
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Scientific Computing Research Environments for the Mathematical Sciences
数学科学的科学计算研究环境
- 批准号:
0215392 - 财政年份:2002
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Combining Machine Learning Explanation Methods with Expectancy-Value Theory to Identify Tailored Interventions for Engineering Student Persistence
将机器学习解释方法与期望值理论相结合,确定针对工程学生坚持的定制干预措施
- 批准号:
2335725 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
High-Valent Iron-Oxo Species for Activation of Strong CH Bonds: New Designs with Novel Ab Initio Methods and Machine Learning
用于激活强CH键的高价铁氧物种:采用新颖的从头算方法和机器学习的新设计
- 批准号:
24K17694 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
- 批准号:
2415445 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
- 批准号:
MR/X033880/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Fellowship
Using Novel Machine Learning Methods to Personalize Strategies for Prevention of Persistent AKI after Cardiac Surgery
使用新颖的机器学习方法制定个性化策略,预防心脏手术后持续性 AKI
- 批准号:
10979324 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Leveraging Causal Inference and Machine Learning Methods to Advance Evidence-Based Maternal Care and Improve Newborn Health Outcomes
利用因果推理和机器学习方法推进循证孕产妇护理并改善新生儿健康结果
- 批准号:
10604856 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Development of Novel Intracellular Analysis Methods by Integrating Raman Imaging and Machine Learning
通过集成拉曼成像和机器学习开发新型细胞内分析方法
- 批准号:
22KJ0287 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Develop machine-learning-augmented URANS methods
开发机器学习增强的 URANS 方法
- 批准号:
2902286 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Studentship
Development of multi-element catalysts using extrapolative machine learning methods
使用外推机器学习方法开发多元素催化剂
- 批准号:
22KF0006 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for JSPS Fellows