Multiscale Methods for Partial Differential Equations
偏微分方程的多尺度方法
基本信息
- 批准号:0209497
- 负责人:
- 金额:$ 11.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2005-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS Award AbstractAward #: 0209497PI: Xu, JinchaoInstitution: Pennsylvania State University Program: Computational MathematicsProgram Manager: Catherine MavriplisTitle: Multiscale Methods for Partial Differential EquationsThe focus of this work is on the development and applications of a two-scale discretization technique, namely the finite element method based on partition of unity. One main application is on the design of efficient discretization for nonmatching (either overlapping or nonoverlapping) grids. The main idea of nonmatching grids is to divide a physical domain into a set of overlapping or nonoverlapping subregions which can accommodate smooth, simple, easily generated grids. In this approach, a grid generation for complex geometries can be made simple, refinement grids can be added or removed without changing other grids, different equations/numerical methods may be used on different grids, efficient structured grid solvers may be used. Furthermore, overlapping grids are well suited for parallelization and vectorization. The proposed generalized finite element method based on partition of unity provides a general and powerful discretization framework for this type of grids. Another major task is the development of a multigrid iterative method for solving the resulting algebraic systems for these new discretization schemes. As divide and conquer techniques, the proposed multiscale algorithms are suitable for parallel and high-performance computers. A class of new multiscale techniques are proposed to study for efficient numerical solution of partial differential equations. Multiscale methods in general are proven to be among the most powerful mathematical tools for the investigation of a broad range of models that are described by partial differential equations. Their pivotal role in the design of fast, reliable, and robust numerical methods for the solution of various problems places them among the most important research areas in the applied mathematics in the recent years. Since these methods are in some sense problem-independent, they are expected to have many important applications in science and engineering such as composite materials and subsurface flows in environmental applications.Date: May 28, 2002
DMS Award AbstractAward #: 0209497 PI: 徐锦超研究机构: 宾夕法尼亚州立大学项目: 计算数学项目经理:凯瑟琳Mavriplis标题:多尺度方法偏微分方程这项工作的重点是发展和应用的两个尺度离散化技术,即有限元方法的基础上划分的单位。 一个主要的应用是对非匹配(重叠或非重叠)网格的有效离散化的设计。 非匹配网格的主要思想是将一个物理区域划分为一组重叠或不重叠的子区域,这些子区域可以容纳光滑、简单、易于生成的网格。 在这种方法中,可以使复杂几何形状的网格生成变得简单,可以在不改变其他网格的情况下添加或移除细化网格,可以在不同的网格上使用不同的方程/数值方法,可以使用有效的结构化网格求解器。 此外,重叠网格非常适合并行化和矢量化。 基于单位分解的广义有限元方法为这类网格提供了一个通用的、强有力的离散框架。 另一个主要任务是发展多重网格迭代方法来求解这些新的离散化方案所产生的代数系统。作为分而治之的技术,所提出的多尺度算法适用于并行和高性能计算机。 提出了一类新的多尺度技术,用于研究偏微分方程的有效数值解。一般来说,多尺度方法被证明是最强大的数学工具之一,用于研究由偏微分方程描述的各种模型。它们在设计快速、可靠和鲁棒的数值方法来解决各种问题中的关键作用使其成为近年来应用数学中最重要的研究领域之一。由于这些方法在某种意义上是独立于问题的,因此它们有望在科学和工程中有许多重要的应用,例如复合材料和环境中的地下流动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinchao Xu其他文献
span style=line-height:150%;font-family:Times New Roman;font-size:12pt;A discontinuous Galerkin method for the fourth order Curl problem/span
求解四阶Curl问题的间断伽辽金法
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Qingguo Hong;Jun Hu;Shi Shu;Jinchao Xu - 通讯作者:
Jinchao Xu
Extended Regularized Dual Averaging Methods for Stochastic Optimization
用于随机优化的扩展正则化双平均方法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jonathan W. Siegel;Jinchao Xu - 通讯作者:
Jinchao Xu
<span style="line-height:150%;font-family:'Times New Roman';font-size:12pt;">Two-grid Methods for Time-harmonic Maxwell Equations</span>
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:
- 作者:
Liuqiang Zhong;Shi Shu;Junxian Wang;Jinchao Xu; - 通讯作者:
Surges generated by water export from an impounded channel
从蓄水渠道排水所产生的涌浪
- DOI:
10.1016/j.oceaneng.2025.121160 - 发表时间:
2025-06-15 - 期刊:
- 影响因子:5.500
- 作者:
Feidong Zheng;Qiang Liu;Xueming Wu;Xiaofen Liu;Shuai Zhang;Jinchao Xu;Xueyi Li - 通讯作者:
Xueyi Li
Efficient degradation of methylene blue at near neutral pH based on heterogeneous Fenton-like system catalyzed by Fe<sub>2</sub>O<sub>3</sub>/MnO<sub>2</sub>
- DOI:
10.1016/j.rechem.2024.101795 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Tie Geng;Jiaguo Yan;Bin Li;Haiyuan Yan;Lei Guo;Qiang Sun;Zengfu Guan;Chunning Zhao;Jinchao Xu;Weichao Wang - 通讯作者:
Weichao Wang
Jinchao Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinchao Xu', 18)}}的其他基金
Workshop on Mathematical Machine Learning and Application
数学机器学习与应用研讨会
- 批准号:
2020623 - 财政年份:2020
- 资助金额:
$ 11.66万 - 项目类别:
Standard Grant
US Participation at the Twenty-sixth Internaltional Domain Decomposition Conference
美国参加第二十六届国际域分解会议
- 批准号:
1930036 - 财政年份:2019
- 资助金额:
$ 11.66万 - 项目类别:
Standard Grant
Multigrid Methods and Machine Learning
多重网格方法和机器学习
- 批准号:
1819157 - 财政年份:2018
- 资助金额:
$ 11.66万 - 项目类别:
Continuing Grant
Integrated Geometric and Algebraic Multigrid Methods
综合几何和代数多重网格方法
- 批准号:
1522615 - 财政年份:2015
- 资助金额:
$ 11.66万 - 项目类别:
Continuing Grant
Single-grid Multi-level Solvers for Coupled PDE Systems
耦合偏微分方程系统的单网格多级求解器
- 批准号:
1217142 - 财政年份:2012
- 资助金额:
$ 11.66万 - 项目类别:
Continuing Grant
User-Friendly Solvers and Solver-Friendly Discretizations
用户友好的求解器和求解器友好的离散化
- 批准号:
0915153 - 财政年份:2009
- 资助金额:
$ 11.66万 - 项目类别:
Standard Grant
SCREMS: Scientific Computing Environments for Mathematical Sciences
SCEMS:数学科学的科学计算环境
- 批准号:
0619587 - 财政年份:2006
- 资助金额:
$ 11.66万 - 项目类别:
Standard Grant
Adaptive Multigrid Methods for a Multiphase Fuel Cell Model
多相燃料电池模型的自适应多重网格方法
- 批准号:
0609727 - 财政年份:2006
- 资助金额:
$ 11.66万 - 项目类别:
Continuing Grant
Mathematical and Computational Studies of Fuel Cell Dynamics
燃料电池动力学的数学和计算研究
- 批准号:
0308946 - 财政年份:2005
- 资助金额:
$ 11.66万 - 项目类别:
Standard Grant
Scientific Computing Research Environments for the Mathematical Sciences
数学科学的科学计算研究环境
- 批准号:
0215392 - 财政年份:2002
- 资助金额:
$ 11.66万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 11.66万 - 项目类别:
Standard Grant
Innovation of Numerical Methods for High-Dimensional Partial Differential Equations
高维偏微分方程数值方法的创新
- 批准号:
2309378 - 财政年份:2023
- 资助金额:
$ 11.66万 - 项目类别:
Standard Grant
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
- 批准号:
RGPIN-2016-06167 - 财政年份:2022
- 资助金额:
$ 11.66万 - 项目类别:
Discovery Grants Program - Individual
Parallel Methods for Partial Differential Equations
偏微分方程的并行方法
- 批准号:
572167-2022 - 财政年份:2022
- 资助金额:
$ 11.66万 - 项目类别:
University Undergraduate Student Research Awards
Accurate and Efficient Computational Methods for the Numerical Solution of High-Dimensional Partial Differential Equations in Computational Finance
计算金融中高维偏微分方程数值解的准确高效计算方法
- 批准号:
569181-2022 - 财政年份:2022
- 资助金额:
$ 11.66万 - 项目类别:
Postgraduate Scholarships - Doctoral
High-performance computational methods for Partial Differential Equations and applications
偏微分方程的高性能计算方法及应用
- 批准号:
RGPIN-2021-03502 - 财政年份:2022
- 资助金额:
$ 11.66万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Partial Differential Equations Methods in the Study of Interfaces
界面研究中的非线性偏微分方程方法
- 批准号:
2155156 - 财政年份:2022
- 资助金额:
$ 11.66万 - 项目类别:
Standard Grant
Development and Application of Modern Numerical Methods for Nonlinear Hyperbolic Systems of Partial Differential Equations
偏微分方程非线性双曲型系统现代数值方法的发展与应用
- 批准号:
2208438 - 财政年份:2022
- 资助金额:
$ 11.66万 - 项目类别:
Standard Grant
CAREER: Randomized Multiscale Methods for Heterogeneous Nonlinear Partial Differential Equations
职业:异质非线性偏微分方程的随机多尺度方法
- 批准号:
2145364 - 财政年份:2022
- 资助金额:
$ 11.66万 - 项目类别:
Continuing Grant
Brown’s Spectral Measure: New Computational Methods from Stochastics, Partial Differential Equations, and Operator Theory
布朗谱测量:来自随机学、偏微分方程和算子理论的新计算方法
- 批准号:
2055340 - 财政年份:2021
- 资助金额:
$ 11.66万 - 项目类别:
Continuing Grant