Techniques and Prediction Models for Sustainable Product-Line Engineering
可持续产品线工程的技术和预测模型
基本信息
- 批准号:221150666
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2012
- 资助国家:德国
- 起止时间:2011-12-31 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Software product line engineering has gained considerable momentum in recent years, both in industry and in academia. Companies and institutions such as NASA, Hewlett Packard, General Motors, Boeing, Nokia, and Philips apply product-line technology with great success to sustain their development by broadening their product portfolio, improving software quality, shorting time to market, and being able to react faster to market changes. However, pursuing a product-line approach implies often an up-front investment for future benefits. Product-line developers have to anticipate which features will be desired by customers in the future. So, prediction models play an important role to avoid uneconomic developments. However, contemporary prediction models largely ignore structural and behavioral properties of the architecture and implementation assets of a product line. For example, modifying the transaction management of a database system is by far more expensive and risky than modifying its command-line interface. We propose to rethink contemporary prediction models and to employ state-of-the-art analysis techniques to create a richer knowledge base for predictions based on implementation knowledge, including software metrics, static analysis, mining techniques, measurements of non-functional properties, and feature-interaction analysis.
软件产品线工程近年来在工业界和学术界都获得了相当大的发展势头。美国国家航空航天局、惠普、通用汽车、波音、诺基亚和飞利浦等公司和机构成功地应用了产品线技术,通过扩大产品组合、提高软件质量、缩短上市时间以及能够更快地对市场变化作出反应来维持其发展。然而,采用生产线方法往往意味着为未来利益进行前期投资。产品线开发人员必须预测客户将来需要哪些功能。因此,预测模型在避免不经济的发展中起着重要的作用。然而,当代的预测模型在很大程度上忽略了产品线的架构和实现资产的结构和行为属性。例如,修改数据库系统的事务管理比修改其命令行界面要昂贵得多,风险也大得多。我们建议重新思考当代的预测模型,并采用最先进的分析技术,以创建一个更丰富的知识库,预测的基础上实现的知识,包括软件度量,静态分析,挖掘技术,测量的非功能属性,和功能交互分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Sven Apel其他文献
Professor Dr.-Ing. Sven Apel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Sven Apel', 18)}}的其他基金
Pervolution: Performance Evolution of Highly-Configurable Software Systems
Pervolution:高度可配置软件系统的性能演变
- 批准号:
326071282 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Generating Correct and Efficient Software based on Product-line Technology
基于产品线技术生成正确、高效的软件
- 批准号:
224880482 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Heisenberg Professorships
ExaStencils - Advanced Stencil-Code Engineering
ExaStencils - 高级模板代码工程
- 批准号:
230724189 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Priority Programmes
Sichere und effiziente Softwareproduktlinien
安全高效的软件产品线
- 批准号:
168119451 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
Algebra-basierte Feature-orientierte Programmsynthese
基于代数的面向特征的程序综合
- 批准号:
77575276 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
Foundations and Implications of Socio-Technical Congruence in Large-Scale, Decentralized, and Distributed Software Projects
大规模、去中心化和分布式软件项目中社会技术一致性的基础和含义
- 批准号:
433609794 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Audiphon (Auditory models for automatic prediction of phonation)
Audiphon(用于自动预测发声的听觉模型)
- 批准号:
24K03872 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
- 批准号:
BB/Y513763/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Sample Size calculations for UPDATing clinical prediction models to Ensure their accuracy and fairness in practice (SS-UPDATE)
用于更新临床预测模型的样本量计算,以确保其在实践中的准确性和公平性(SS-UPDATE)
- 批准号:
MR/Z503873/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Machine learning-based prediction models for morbidity and mortality risk of cardiometabolic diseases in post-disaster residents by using the Fukushima longitudinal health data
利用福岛纵向健康数据基于机器学习的灾后居民心脏代谢疾病发病和死亡风险预测模型
- 批准号:
24K13482 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optimizing the implementation of personalized risk-prediction models for venous thromboembolism among hospitalized adults
优化住院成人静脉血栓栓塞个性化风险预测模型的实施
- 批准号:
10658198 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Clinical breast cancer risk prediction models for women with a high-risk benign breast diagnosis
高风险良性乳腺诊断女性的临床乳腺癌风险预测模型
- 批准号:
10719777 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative Research: NSF-CSIRO: HCC: Small: Understanding Bias in AI Models for the Prediction of Infectious Disease Spread
合作研究:NSF-CSIRO:HCC:小型:了解预测传染病传播的 AI 模型中的偏差
- 批准号:
2302969 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Primary prostate cancer cells as novel models for patient therapy prediction
原发性前列腺癌细胞作为患者治疗预测的新模型
- 批准号:
477987 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Methods for Enhancing Polygenic Risk Prediction Models for Complex Disease
增强复杂疾病多基因风险预测模型的方法
- 批准号:
10717244 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Demonstrating the feasibility of applying machine learning models to railway condition data: Engine condition monitoring and failure prediction
展示将机器学习模型应用于铁路状况数据的可行性:发动机状况监测和故障预测
- 批准号:
10080979 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D














{{item.name}}会员




