NeTS: Small: Channel Recognition for Optimized Links And Networks (CROLA)
NeTS:小型:优化链路和网络的信道识别 (CROLA)
基本信息
- 批准号:1526269
- 负责人:
- 金额:$ 46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Wirelessly-connected users encounter a vast array of environmental settings from factors including diverse terrain, buildings, vegetation, weather conditions, and velocities. Today, when traversing across these diverse conditions, each environmental change triggers a new wireless channel characterization so that links can have optimal performance for transmission rate and frequency band decisions, both of which depend on spatial and environmental characteristics. This characterization process can induce a high overhead on the network, greatly reducing the overall performance of the wireless links which were seeking to be optimized. In this project, diverse wireless scenarios will be classified into a finite set to recognize wireless channel types and optimize per-link and network-wide decisions. The project will significantly reduce the amount of characterization that needs to be performed per environment, especially when revisiting a location or when a new location shares many similarities as those previously visited.The researchers will use two different approaches to classify wireless channels and create a notion of channel type which will be fed into an online training framework to optimize transmission rate and frequency band selection. In the first approach, previously encountered channel types will be recognized for immediate link-level and network-wide decisions and the resulting performance from these decisions will be observed to improve future decisions. In the second approach, previously-unencountered channel types for which insufficient levels of training exist will be inferred via crowdsourcing as an initial starting point for on-the-fly training. There are four main intellectual thrusts to the proposal: (i) The geometric relationship that forms between the link-level performance and the n-dimensional space of environmental factors contributing to such performance will be characterized in order to classify and recognize channel types across geographically diverse regions. (ii) A crowdsourcing approach with a large data set of cellular and WiFi-based mobile phone users will be leveraged to experimentally isolate the roles of geolocation, land use, and situational context to geo-spatially infer channel types. (iii) An on-the-fly training framework will be developed to leverage these two notions of channel type for previously-encountered and well-trained scenarios for optimal link adaptation, network-wide decisions, and ongoing training, and previously-unencountered or poorly-trained scenarios to use inferred channel types with decisions and resulting performance used for constructing a sufficient training. (iv) This knowledge of channel type will be exploited along with the current spectral activity and demand to optimize the band assignment in multiband, multihop networks.
无线连接的用户会遇到各种各样的环境设置,包括不同的地形、建筑物、植被、天气条件和速度。如今,当穿越这些不同的条件时,每种环境变化都会触发新的无线信道特性,以便链路能够在传输速率和频带决策方面具有最佳性能,这两者都取决于空间和环境特征。这种表征过程可能会导致网络上的高开销,从而大大降低正在寻求优化的无线链路的整体性能。在这个项目中,不同的无线场景将被分类为一个有限的集合,以识别无线信道类型并优化每个链路和整个网络的决策。该项目将显著减少每个环境需要执行的特征描述的数量,特别是当重新访问一个位置或当一个新的位置与以前访问的位置有许多相似之处时。研究人员将使用两种不同的方法对无线信道进行分类,并创建一个信道类型的概念,该概念将用于在线培训框架,以优化传输速率和频带选择。在第一种方法中,将识别先前遇到的通道类型,以便立即进行链路级和网络范围的决策,并观察这些决策产生的性能,以改进未来的决策。在第二种方法中,以前没有遇到过的渠道类型,培训水平不足,将通过众包作为即时培训的初始起点来推断。该建议有四个主要的思想要点:(i)将描述链路级性能与促进这种性能的环境因素的n维空间之间形成的几何关系,以便对地理上不同区域的渠道类型进行分类和识别。(ii)将利用基于蜂窝和wifi的移动电话用户的大量数据集的众包方法,实验性地分离地理位置、土地使用和情景背景的作用,从而在地理空间上推断信道类型。(iii)将开发一个实时训练框架,以利用这两个通道类型概念,用于先前遇到的和训练良好的场景,以获得最佳的链路适应、网络范围的决策和持续的训练,以及先前未遇到或训练不良的场景,以使用推断的通道类型,并使用决策和结果性能来构建充分的训练。(iv)这种信道类型的知识将与当前的频谱活动和需求一起被利用,以优化多频带、多跳网络中的频带分配。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Camp其他文献
Temporal gene expression during asexual development of the apicomplexan emSarcocystis neurona/em
顶复门的神经肉孢子虫无性发育期间的时间基因表达
- DOI:
10.1128/msphere.00111-24 - 发表时间:
2024-05-14 - 期刊:
- 影响因子:3.100
- 作者:
Sriveny Dangoudoubiyam;Jamie K. Norris;Sivaranjani Namasivayam;Rodrigo de Paula Baptista;Naila Cannes do Nascimento;Joseph Camp;Christopher L. Schardl;Jessica C. Kissinger;Daniel K. Howe;Ira J. Blader - 通讯作者:
Ira J. Blader
Pre-crowdsourcing: Predicting wireless propagation with phone-based channel quality measurements
- DOI:
10.1016/j.comcom.2018.10.003 - 发表时间:
2018-11-01 - 期刊:
- 影响因子:
- 作者:
Rita Enami;Yan Shi;Dinesh Rajan;Joseph Camp - 通讯作者:
Joseph Camp
Joseph Camp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Camp', 18)}}的其他基金
CNS Core: Small: Collaborative Research: Many-Antenna Full-Duplex for Mobile and Multihop Topologies
CNS 核心:小型:协作研究:用于移动和多跳拓扑的多天线全双工
- 批准号:
1909381 - 财政年份:2019
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
II-New: Multi-Dimensional Drone Communication Infrastructure
II-新:多维无人机通信基础设施
- 批准号:
1823304 - 财政年份:2018
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
EAGER: SC2: Load Prediction and Collision Coordination for Collaboration Channel
EAGER:SC2:协作通道的负载预测和碰撞协调
- 批准号:
1737732 - 财政年份:2017
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
Student Travel Support for the IEEE SECON 2015 Conference
IEEE SECON 2015 会议的学生旅行支持
- 批准号:
1534538 - 财政年份:2015
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
I-Corps: Efficient Terrain-Based Measurement Gathering for Path Loss Inference
I-Corps:用于路径损耗推断的高效基于地形的测量收集
- 批准号:
1600549 - 财政年份:2015
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
NeTS: Small: Collaborative Research: Theory, Algorithms, and Experiments for Frequency-Agile Beamforming Mesh (FabMesh)
NeTS:小型:协作研究:捷变频波束形成网格 (FabMesh) 的理论、算法和实验
- 批准号:
1320442 - 财政年份:2013
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
CAREER: Leveraging Simultaneous Access to Multiple Frequency Bands in Multihop Wireless Networks
职业:在多跳无线网络中同时访问多个频段
- 批准号:
1150215 - 财政年份:2012
- 资助金额:
$ 46万 - 项目类别:
Continuing Grant
CRI/II-New: Dallas-ARea Testbed for Context-Aware, Cognitive Research (DART-CARs)
CRI/II-新:达拉斯地区情景感知、认知研究测试台 (DART-CAR)
- 批准号:
0958436 - 财政年份:2010
- 资助金额:
$ 46万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
- 批准号:
2403559 - 财政年份:2024
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
- 批准号:
2403560 - 财政年份:2024
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
SaTC: CORE: Small: An Automated Framework for Mitigating Single-Trace Side-Channel Leakage
SaTC:核心:小型:用于减轻单迹侧通道泄漏的自动化框架
- 批准号:
2241879 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Automatic Detection and Repair of Side Channel Vulnerabilities in Software Code
SaTC:CORE:小型:自动检测和修复软件代码中的侧信道漏洞
- 批准号:
2245344 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Continuing Grant
Pericyte KATP channel hyperactivity in cerebral small vessel disease
脑小血管疾病中周细胞 KATP 通道过度活跃
- 批准号:
10750246 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Collaborative Research: SaTC: CORE: Small: ERADICATOR: Techniques for Laser Assisted Side-Channel Attack Monitor & Response
协作研究:SaTC:核心:小型:ERADICATOR:激光辅助侧信道攻击监控技术
- 批准号:
2150122 - 财政年份:2022
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: ERADICATOR: Techniques for Laser Assisted Side-Channel Attack Monitor & Response
协作研究:SaTC:核心:小型:ERADICATOR:激光辅助侧信道攻击监控技术
- 批准号:
2150123 - 财政年份:2022
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
NSF-AoF: Collaborative Research: CIF: Small: 6G Wireless Communications via Enhanced Channel Modeling and Estimation, Channel Morphing and Machine Learning for mmWave Bands
NSF-AoF:协作研究:CIF:小型:通过增强型毫米波信道建模和估计、信道变形和机器学习实现 6G 无线通信
- 批准号:
2225617 - 财政年份:2022
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Generic Circuit Learning from Adaptive Side-Channel Queries
SaTC:核心:小型:从自适应侧通道查询中学习通用电路
- 批准号:
2155189 - 财政年份:2022
- 资助金额:
$ 46万 - 项目类别:
Standard Grant