CHS: Small: Supporting Crowdsourced Sensemaking in Big Data with Dynamic Context Slices
CHS:小型:通过动态上下文切片支持大数据中的众包意义建构
基本信息
- 批准号:1527453
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-10-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research will investigate how crowdsourcing and computational techniques can be combined to support the efforts of an individual analyst engaged in a complex sensemaking task, such as identifying a threat to national security or determining the names of people and places in a photograph. Currently, such complex tasks are beyond the capabilities of the most advanced machine learning techniques or crowdsourcing workflows, and even trained experts struggle to perform them. Huge quantities of data are now available online, but making sense of them is challenging because human cognition, while remarkably powerful, is nevertheless a limited resource. Visual analytics tools seek to overcome this limitation by leveraging the complementary strengths of information visualization and data mining, but these tools generally assist with low-level tasks, requiring significant effort on the part of users. Crowdsourcing has emerged as a promising technique for applying human intelligence to problems computers cannot easily solve, but for crowds to assist individuals with complex sensemaking tasks, two significant challenges must be addressed. First, we must understand when crowds versus computation are more useful at each phase in the sensemaking loop. Second, we must overcome the limited time and expertise of most crowd workers to sustain deep, complex lines of inquiry.This research addresses both of these challenges through a series of four experiments. First, it will conduct a laboratory study where individuals perform complex sensemaking tasks to understand what types and amounts of context they use to make decisions, and how the sensemaking loop might be decomposed into subtasks. Second, it will conduct a series of experiments comparing crowdsourcing to automated techniques for each of the most promising sensemaking subtasks. Third, it will experiment with different crowd workflows to develop a revised sensemaking loop, optimized for the relative strengths of crowds and computation, and develop a software prototype based on this approach. At the core of the software design is the novel concept of "context slices," an innovative technique for addressing the transience of crowd workers by giving them only the information they need to complete their assigned task, allowing complex investigations to be pursued across multiple workers. The fourth experiment will evaluate this approach by comparing performance with the software to the baselines established in the first study.
这项研究将探讨如何将众包和计算技术相结合,以支持从事复杂的意义制造任务的个人分析师的努力,例如识别对国家安全的威胁或确定照片中的人物和地点的名称。目前,这种复杂的任务超出了最先进的机器学习技术或众包工作流程的能力,即使是训练有素的专家也很难完成这些任务。 现在网上有大量的数据,但理解它们是一项挑战,因为人类的认知虽然非常强大,但资源有限。可视化分析工具试图通过利用信息可视化和数据挖掘的互补优势来克服这一限制,但这些工具通常有助于低级别任务,需要用户付出大量努力。众包已经成为一种很有前途的技术,可以将人类智能应用于计算机无法轻松解决的问题,但要让群体帮助个人完成复杂的意义构建任务,必须解决两个重大挑战。首先,我们必须理解在意义构建循环的每个阶段,群体与计算在什么时候更有用。其次,我们必须克服大多数人群工作者有限的时间和专业知识,以维持深入,复杂的调查路线。首先,它将进行一项实验室研究,让个人执行复杂的意义构建任务,以了解他们用来做决策的上下文的类型和数量,以及意义构建循环如何分解为子任务。其次,它将针对每一个最有前途的意义构建子任务进行一系列实验,将众包与自动化技术进行比较。第三,它将尝试不同的人群工作流程,以开发一个经过修改的意义构建循环,针对人群和计算的相对优势进行优化,并基于这种方法开发一个软件原型。软件设计的核心是“上下文切片”的新概念,这是一种创新技术,通过仅向人群工作人员提供完成指定任务所需的信息来解决人群工作人员的短暂性,从而允许多个工作人员进行复杂的调查。第四项实验将通过比较软件的性能与第一项研究中建立的基线来评估这种方法。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GroundTruth: Augmenting Expert Image Geolocation with Crowdsourcing and Shared Representations
- DOI:10.1145/3359209
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:Sukrit Venkatagiri;Jacob Thebault-Spieker;Rachel Kohler;John Purviance;Rifat Sabbir Mansur;Kurt Luther
- 通讯作者:Sukrit Venkatagiri;Jacob Thebault-Spieker;Rachel Kohler;John Purviance;Rifat Sabbir Mansur;Kurt Luther
Supporting Historical Photo Identification with Face Recognition and Crowdsourced Human Expertise (Extended Abstract)
- DOI:10.24963/ijcai.2020/660
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Vikram Mohanty;D. Thames;Sneha Mehta;Kurt Luther
- 通讯作者:Vikram Mohanty;D. Thames;Sneha Mehta;Kurt Luther
Geolocating Images with Crowdsourcing and Diagramming
通过众包和图表对图像进行地理定位
- DOI:10.24963/ijcai.2018/741
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Kohler, Rachel;Purviance, John;Luther, Kurt
- 通讯作者:Luther, Kurt
Second Opinion: Supporting Last-Mile Person Identification with Crowdsourcing and Face Recognition
- DOI:10.1609/hcomp.v7i1.5272
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:V. Mohanty;Kareem Abdol-Hamid;C. Ebersohl;K. Luther
- 通讯作者:V. Mohanty;Kareem Abdol-Hamid;C. Ebersohl;K. Luther
Supporting Image Geolocation with Diagramming and Crowdsourcing
- DOI:10.1609/hcomp.v5i1.13296
- 发表时间:2017-09
- 期刊:
- 影响因子:0
- 作者:Rachel Kohler;John Purviance;Kurt Luther
- 通讯作者:Rachel Kohler;John Purviance;Kurt Luther
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kurt Luther其他文献
Redistricting Practices in Public Schools: Social Progress or Necessity?
公立学校的选区重新划分实践:社会进步还是必要性?
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Andreea Sistrunk;Subhodip Biswas;Nathan Self;Kurt Luther;Naren Ramakrishnan - 通讯作者:
Naren Ramakrishnan
BackTrace: A Human-AI Collaborative Approach to Discovering Studio Backdrops in Historical Photographs
BackTrace:一种人类与人工智能协作的方法来发现历史照片中的工作室背景
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jude Lim;Vikram Mohanty;Terryl Dodson;Kurt Luther - 通讯作者:
Kurt Luther
Pathfinder: an online collaboration environment for citizen scientists
Pathfinder:公民科学家的在线协作环境
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Kurt Luther;Scott Counts;K. Stecher;Aaron Hoff;Paul Johns - 通讯作者:
Paul Johns
System Design and Scenario Step 1 : Expert Launches a Crowd Investigation
系统设计和场景第一步:专家发起人群调查
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Rachel Kohler;John Purviance;Kurt Luther - 通讯作者:
Kurt Luther
Redistributing leadership in online creative collaboration
重新分配在线创意协作的领导地位
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Kurt Luther;Casey Fiesler;A. Bruckman - 通讯作者:
A. Bruckman
Kurt Luther的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kurt Luther', 18)}}的其他基金
I-Corps: Historical Photo Identification with Crowdsourcing and Automated Face Recognition
I-Corps:通过众包和自动人脸识别进行历史照片识别
- 批准号:
2221733 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
WORKSHOP: Graduate Student Symposium at the 2017 ACM Conference on Creativity & Cognition
研讨会:2017 年 ACM 创造力会议研究生研讨会
- 批准号:
1723306 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Transforming Investigative Science and Practice with Expert-Led Crowdsourcing
职业:通过专家主导的众包改变调查科学和实践
- 批准号:
1651969 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
- 批准号:
2343387 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Supporting Privacy Negotiation Among Multiple Stakeholders in Smart Environments
协作研究:SaTC:核心:小型:支持智能环境中多个利益相关者之间的隐私谈判
- 批准号:
2232656 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: Supporting Flexible and Safe Disability Representation in Social Virtual Reality
合作研究:HCC:小型:支持社交虚拟现实中灵活、安全的残疾表征
- 批准号:
2328183 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Supporting Privacy Negotiation Among Multiple Stakeholders in Smart Environments
协作研究:SaTC:核心:小型:支持智能环境中多个利益相关者之间的隐私谈判
- 批准号:
2232654 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Supporting Privacy Negotiation Among Multiple Stakeholders in Smart Environments
协作研究:SaTC:核心:小型:支持智能环境中多个利益相关者之间的隐私谈判
- 批准号:
2232655 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: Supporting Flexible and Safe Disability Representation in Social Virtual Reality
合作研究:HCC:小型:支持社交虚拟现实中灵活、安全的残疾表征
- 批准号:
2328182 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Supporting Privacy Negotiation Among Multiple Stakeholders in Smart Environments
协作研究:SaTC:核心:小型:支持智能环境中多个利益相关者之间的隐私谈判
- 批准号:
2232653 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Supporting Privacy Negotiation Among Multiple Stakeholders in Smart Environments
协作研究:SaTC:核心:小型:支持智能环境中多个利益相关者之间的隐私谈判
- 批准号:
2341187 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: PATHWiSE - Supporting Teacher Authoring of Robot-Assisted Homework
合作研究:HCC:小型:PATHWiSE - 支持教师编写机器人辅助作业
- 批准号:
2202802 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: PATHWiSE - Supporting Teacher Authoring of Robot-Assisted Homework
合作研究:HCC:小型:PATHWiSE - 支持教师编写机器人辅助作业
- 批准号:
2202803 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant