SNM: Massively Parallel Nanopatterning by Print and Repeat Nanopantography with Reusable Stencil Masks

SNM:使用可重复使用的模板掩模通过打印和重复纳米缩放进行大规模并行纳米图案化

基本信息

  • 批准号:
    1530753
  • 负责人:
  • 金额:
    $ 142.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

The demand for ever-smaller electronic and photonic devices shows no sign of stopping, and in fact it is accelerating. Fabricating patterns with sizes less than 10 nanometers (10 billionths of a meter, or about 10,000 times smaller than a human hair) is essential for the manufacturing of future integrated circuits with speeds and functionality far exceeding current capabilities, that could revolutionize computers, information storage, and clean energy devices. Biological applications such as rapid DNA sequencing also require such small dimensions. Although techniques have demonstrated this resolution, their integration into manufacturing is hampered by serious technical and/or economic issues. Previously, the researchers demonstrated a nanopantography method that could address these issues. In this process, patterns are formed on a substrate such as a silicon wafer by directing a beam of positive ions at the substrate. Ions are focused to write patterns at sizes as small as 3 nanometers simultaneously at billions of locations. The past research was limited by the fact that the focusing structure (an array of lenses that focus ions much as glass lenses focus light) had to be incorporated on the substrate, which resulted in low throughput. The new studies will solve this problem by allowing the lens array to be separate, so that it can be used on multiple substrates. This will enable many applications for advanced electronic devices that benefit all aspects of modern life, especially the energy and health industries, with clear societal benefits. This challenging project will lead to new knowledge and will advance education in this important area of science and technology.The electrostatic microlenses were built on the substrate, using standard microelectronic manufacturing methods. Voltages applied to the lens array cause ion beamlets entering each of billions of microlenses to be focused on the substrate. Using nanopantography, arrays of 300 nm diameter electrostatic lenses create nano-patterns in Si with sizes as small as 3 nm. While nanopantography can form complex patterns with very high resolution, the technique relies on the fabrication of a microlens array on each substrate, adding complexity to the process. To address this issue, the PIs plan on separating the microlens array from the substrate, so that it can be reused for patterning of subsequent substrates. This involves the fabrication of a stencil mask, containing the microlens array, which will be placed on sequential substrates to demonstrate a print-and-repeat process. Following this approach will greatly improve throughput, making nanopantography a manufacturing-worthy process. Experimental work will be complemented by ion trajectory simulations to achieve best focus, as a function of gap between the stencil mask and the substrate, and plasma beam conditions. Molecular Dynamics simulations will be used to study nanofeature etching in graphene on SiO2 by O+ and O2+, with an emphasis on the effect of ion energy and mass on feature size. Quality control measures will be demonstrated for potential pilot line manufacturing. The work will demonstrate a massively parallel method to repeatedly write nanopatterns in 2-D materials (graphene and WS2) on a substrate with a better than the state-of-the-art resolution of 3 nm, using a reusable stencil mask lens array. Nano holes, dots, and ribbons formed in the 2D layers will be characterized for plasmonic and other optoelectronic properties. Nanodisks will be carved out of large area WS2 films. Micro-photoluminescence will be used to characterize their light emitting properties.
对越来越小的电子和光子器件的需求没有停止的迹象,事实上它正在加速。制造尺寸小于10纳米(十亿分之一米,或比人类头发小约10,000倍)的图案对于制造速度和功能远远超过当前能力的未来集成电路至关重要,这可能会彻底改变计算机,信息存储和清洁能源设备。生物应用,如快速DNA测序,也需要这样的小尺寸。虽然技术已经证明了这种解决方案,但它们与制造业的结合受到严重的技术和/或经济问题的阻碍。此前,研究人员展示了一种可以解决这些问题的纳米光成像方法。在该工艺中,通过将正离子束引导到衬底上,在诸如硅晶片的衬底上形成图案。离子被集中在数十亿个位置上同时写入小至3纳米的图案。过去的研究受限于聚焦结构(聚焦离子的透镜阵列,就像玻璃透镜聚焦光一样)必须结合在基板上,这导致低产量。新的研究将通过允许透镜阵列分开来解决这个问题,以便它可以在多个基板上使用。这将使先进电子设备的许多应用能够惠及现代生活的各个方面,特别是能源和健康行业,并具有明显的社会效益。这个具有挑战性的项目将带来新的知识,并将促进这一重要科学技术领域的教育。静电微透镜是使用标准的微电子制造方法在衬底上制造的。施加到所述透镜阵列的电压使进入数十亿个微透镜中的每一者的离子子束聚焦于所述衬底上。使用纳米光照相术,300 nm直径的静电透镜阵列在Si中创建尺寸小至3 nm的纳米图案。虽然纳米照相术可以形成具有非常高分辨率的复杂图案,但该技术依赖于在每个基板上制造微透镜阵列,从而增加了工艺的复杂性。为了解决这个问题,PI计划将微透镜阵列与基板分离,以便其可以重新用于后续基板的图案化。这涉及到一个模板掩模的制造,包含微透镜阵列,这将被放置在连续基板上,以证明印刷和重复过程。遵循这种方法将大大提高吞吐量,使纳米光成像成为一种值得制造的工艺。实验工作将补充离子轨迹模拟,以实现最佳的焦点,作为模板掩模和基板之间的间隙的函数,和等离子体束条件。分子动力学模拟将被用来研究纳米特征蚀刻在石墨烯上的二氧化硅由O+和O2+,重点是离子的能量和质量的影响特征尺寸。将证明潜在中试生产线的质量控制措施。这项工作将展示一种大规模并行方法,使用可重复使用的模板掩模透镜阵列,以优于最先进的3 nm分辨率在衬底上重复写入2-D材料(石墨烯和WS 2)中的纳米粒子。 在2D层中形成的纳米孔、点和带将被表征为等离子体和其他光电性质。纳米盘将由大面积的WS 2薄膜雕刻而成。将使用显微光致发光来表征它们的发光特性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vincent Donnelly其他文献

Vincent Donnelly的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vincent Donnelly', 18)}}的其他基金

AIR Option 1: Technology Translation: Control of Ion Energy Distributions in Plasma Processing
AIR 选项 1:技术转化:等离子体处理中离子能量分布的控制
  • 批准号:
    1343387
  • 财政年份:
    2013
  • 资助金额:
    $ 142.57万
  • 项目类别:
    Standard Grant
Large Area, Rapid Manufacturing of Virtually Any Nanopattern Using Nanopantography
使用纳米缩放技术大面积、快速制造几乎任何纳米图案
  • 批准号:
    1030620
  • 财政年份:
    2010
  • 资助金额:
    $ 142.57万
  • 项目类别:
    Standard Grant
Systematic Studies of Plasma Reactions on Dynamic Surfaces, Using a Novel Rotating Substrate
使用新型旋转基底对动态表面上的等离子体反应进行系统研究
  • 批准号:
    0966967
  • 财政年份:
    2010
  • 资助金额:
    $ 142.57万
  • 项目类别:
    Standard Grant
Systematic Studies of Plasma Reactions on Dynamic Surfaces, Using a Novel Rotating Substrate
使用新型旋转基底对动态表面上的等离子体反应进行系统研究
  • 批准号:
    0650992
  • 财政年份:
    2007
  • 资助金额:
    $ 142.57万
  • 项目类别:
    Standard Grant
NIRT: Nano-Pantography
NIRT:纳米受电弓
  • 批准号:
    0303790
  • 财政年份:
    2003
  • 资助金额:
    $ 142.57万
  • 项目类别:
    Standard Grant

相似海外基金

MFB: Massively parallel identification of translation regulatory sequences in human and viral mRNAs
MFB:大规模并行鉴定人类和病毒 mRNA 中的翻译调控序列
  • 批准号:
    2330451
  • 财政年份:
    2024
  • 资助金额:
    $ 142.57万
  • 项目类别:
    Standard Grant
Massively-parallel functional interrogation of genetic variation in CMD-associated alpha-dystroglycan glycosylating enzymes
CMD 相关 α-肌营养不良聚糖糖基化酶遗传变异的大规模并行功能询问
  • 批准号:
    10802855
  • 财政年份:
    2023
  • 资助金额:
    $ 142.57万
  • 项目类别:
Massively Parallel Optoacoustic Retinal Stimulation at Micrometer-Resolution
微米分辨率的大规模并行光声视网膜刺激
  • 批准号:
    10731795
  • 财政年份:
    2023
  • 资助金额:
    $ 142.57万
  • 项目类别:
SBIR Phase I: Massively Parallel Protocols for Software-based Wireless Systems
SBIR 第一阶段:基于软件的无线系统的大规模并行协议
  • 批准号:
    2322307
  • 财政年份:
    2023
  • 资助金额:
    $ 142.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
  • 批准号:
    2243706
  • 财政年份:
    2023
  • 资助金额:
    $ 142.57万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Massively Parallel Graph Processing on Next-Generation Multi-GPU Supercomputers
RII Track-4:NSF:下一代多 GPU 超级计算机上的大规模并行图形处理
  • 批准号:
    2229394
  • 财政年份:
    2023
  • 资助金额:
    $ 142.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
  • 批准号:
    2243704
  • 财政年份:
    2023
  • 资助金额:
    $ 142.57万
  • 项目类别:
    Standard Grant
Performance Improvement of Massively Parallel Sample-Based Model Predictive Control
大规模并行基于样本的模型预测控制的性能改进
  • 批准号:
    23K03896
  • 财政年份:
    2023
  • 资助金额:
    $ 142.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
  • 批准号:
    2243703
  • 财政年份:
    2023
  • 资助金额:
    $ 142.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
  • 批准号:
    2243705
  • 财政年份:
    2023
  • 资助金额:
    $ 142.57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了