NCS-FO: Nanomagnetic Stimulation Capability for Neural Investigation and Control

NCS-FO:用于神经研究和控制的纳米磁刺激能力

基本信息

  • 批准号:
    1533484
  • 负责人:
  • 金额:
    $ 36.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

ECCS- Prop. No. 1533598 PI: Gong, Yiyang Institute: Duke University Title: NCS-FO: Real-time optical readout and control of population neural activity with cellular resolution Objective: This project will develop a mechanism for simultaneously controlling and reading out neural activity when being activated by optogenetic techniques; this capability will surpass a previous limitation in neural studies. The proposal is separated into three aims: 1) develop calcium sensors and optogenetic channels active on different wavelength ranges to allow simultaneous readout and control, 2) develop a dual-beam two photon microscope, and 3) develop imaging software that can process neural activity in real-time. Nontechnical abstract Understanding neural function requires examining specific subsets of the vast numbers of neurons in the brain. Recently developed optogenetics tools, such as optogenetic stimulation and calcium imaging, have partially fulfilled the need to target these specific sets of neurons and study their function. These techniques deliver engineered genes to targeted neural populations, and use light to manipulate or measure neural activity. Current optogenetic tools lack the spatiotemporal resolution to causally study many individual neurons in parallel on fast time scales; they only make broad conclusions either on near-millimeter sized brain regions, or over the timescale of many action potentials. We propose to integrate the design and implementation of optical and genetic tools to greatly refine the scale of investigating neural activity. Specifically, we will create two optically independent channels: one channel for fast, spatially precise optical patterning to control individual neurons; and one channel for independent recording of neural activity from individual neurons. We will then integrate these two channels by creating software that instantaneously patterns optical excitation based on the optical recording. Integrative design and engineering of this expansive set of tools will enable neuroscientists to quickly manipulate and control large populations of single neurons, a capability that does not exist presently. Our technology will allow the community to directly explore how neural activity patterns of many individual neurons in one brain region drive downstream neural activity. This novel probing of functional connectivity is exactly the type of study needed to better understand the coordination of neural activity in healthy and diseased brains. Beyond the specific application of neuroscience, training students within our multidisciplinary setting will create the next generation of scientists capable of tackling the broad set of technical challenges facing society today. Technical Abstract Optical imaging of brain activity has steadily developed into a staple technique within neuroscience labs over the past decade. In combination with genetically encoded sensors of neural activity, optical methods enable genetic targeting and chronic, simultaneous imaging of many individual neurons. One significant weakness of existing optical techniques when compared to electrophysiology is the inability to simultaneously measure and control the activity of a neuron in real time. We propose to address this shortcoming by developing an optical imaging system and data processing software suite that will enable real-time optical readout of neural activity and real-time neural feedback via optical excitation, all with cellular level specificity and in parallel over a large population of neurons. This new ability to optically record and manipulate many genetically or functionally specified neurons individually will augment current studies using bulk neural activation or inhibition; the fine scale perturbations of neurons will tease apart the details of neural circuits. Specifically, we will engineer a set of optogenetic actuators, fluorescent sensors, and microscopy tools that will enable optical readout and control of neurons in different wavelength channels. We will also develop fast image processing algorithms that quickly convert images to neural activity of individual neurons, thereby enabling real-time control of neural activity based on the optical readout. Recently, improvements to these tools occurred independently. Our proposal will address the integrated development of the tool set, and effectively employ trade-offs between the individual components. For example, simultaneous engineering of the protein sensor, imaging processing software, and optical imaging hardware will optimize the readout fidelity. Similarly, joint design of the genetic tools? spectral separation and the optical spatiotemporal resolution will extend optical control precision. Integration of these developments to examine neural function at the cellular level is unprecedented: successful advancement of this research will enable novel examination of the brain and help guide targeted biomedical therapies.
ECCS——道具吗。项目名称:NCS-FO:基于细胞分辨率的群体神经活动实时光学读取与控制目的:本项目将开发一种光遗传技术激活时神经活动同时控制和读取的机制;这种能力将超越以前神经研究的限制。该提案分为三个目标:1)开发不同波长范围的钙传感器和光遗传通道,以实现同时读取和控制;2)开发双光束双光子显微镜;3)开发可以实时处理神经活动的成像软件。理解神经功能需要检查大脑中大量神经元的特定子集。最近开发的光遗传学工具,如光遗传学刺激和钙成像,已经部分满足了针对这些特定神经元集并研究其功能的需求。这些技术将工程基因传递给目标神经群,并利用光来操纵或测量神经活动。目前的光遗传学工具缺乏在快速时间尺度上并行研究许多单个神经元的时空分辨率;他们只能在接近毫米大小的大脑区域或许多动作电位的时间尺度上得出广泛的结论。我们建议整合光学和遗传工具的设计和实现,以大大细化研究神经活动的规模。具体来说,我们将创建两个光学独立的通道:一个通道用于快速,空间精确的光学图案来控制单个神经元;还有一个通道用于独立记录单个神经元的神经活动。然后,我们将通过创建基于光学记录的即时模式光激发的软件来集成这两个通道。这种扩展工具集的综合设计和工程将使神经科学家能够快速操纵和控制大量单个神经元,这是目前不存在的能力。我们的技术将允许社区直接探索一个大脑区域中许多单个神经元的神经活动模式如何驱动下游神经活动。这种对功能连接的新颖探索正是更好地理解健康和患病大脑中神经活动协调所需要的研究类型。除了神经科学的具体应用之外,在我们的多学科环境中培养学生将培养出能够应对当今社会面临的广泛技术挑战的下一代科学家。在过去的十年中,脑活动的光学成像已经稳步发展成为神经科学实验室的主要技术。结合基因编码的神经活动传感器,光学方法可以实现基因靶向和许多单个神经元的慢性、同步成像。与电生理学相比,现有光学技术的一个显著缺点是无法同时实时测量和控制神经元的活动。我们建议通过开发一种光学成像系统和数据处理软件套件来解决这一缺点,该系统将通过光激发实现神经活动的实时光学读出和实时神经反馈,所有这些都具有细胞水平的特异性,并且在大量神经元上并行进行。这种光学记录和操纵许多基因或功能特定神经元的新能力将增强目前使用大量神经激活或抑制的研究;神经元的细微扰动将梳理出神经回路的细节。具体来说,我们将设计一套光遗传致动器,荧光传感器和显微镜工具,使光学读出和控制神经元在不同的波长通道。我们还将开发快速图像处理算法,将图像快速转换为单个神经元的神经活动,从而实现基于光学读出的神经活动的实时控制。最近,对这些工具进行了独立的改进。我们的建议将处理工具集的集成开发,并有效地在各个组件之间进行权衡。例如,蛋白质传感器、成像处理软件和光学成像硬件的同步工程将优化读出保真度。同样,基因工具的联合设计?光谱分离和光学时空分辨率提高了光学控制精度。在细胞水平上整合这些发展来检查神经功能是前所未有的:这项研究的成功进展将使新的大脑检查成为可能,并有助于指导有针对性的生物医学治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nian Sun其他文献

A real-world study of sirolimus in the treatment of pediatric head and neck lymphatic malformations
西罗莫司治疗小儿头颈部淋巴管畸形的一项真实世界研究
  • DOI:
    10.1016/j.jvsv.2025.102230
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Jialu Wang;Yiran Meng;Xuexi Zhang;Yanzhen Li;Nian Sun;Qiaoyin Liu;Yun Peng;Xiaoling Cheng;Yuanhu Liu;Zhiyong Liu;Yuwei Liu;Ge Zhang;Xin Ni;Shengcai Wang
  • 通讯作者:
    Shengcai Wang
The electrochemical performance of La0.6Sr0.4Co1-x Ni x O3 perovskite catalysts for Li-O2 batteries
  • DOI:
    10.1007/s11581-015-1606-9
  • 发表时间:
    2015-12-10
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Nian Sun;Hanxing Liu;Zhiyong Yu;Zhenning Zheng;Chongyang Shao
  • 通讯作者:
    Chongyang Shao
Main features and treatments of cervical cysts in children from a single-center experience
  • DOI:
    10.1186/s12893-025-02791-2
  • 发表时间:
    2025-02-28
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Nian Sun;Wei Pang;Xuexi Zhang;Yanzhen Li;Qiaoyin Liu;Zhiyong Liu;Xiaodan Li;Junlong Tan;Shengcai Wang;Xin Ni
  • 通讯作者:
    Xin Ni
Correction to: A somatic mutation in PIK3CD unravels a novel candidate gene for lymphatic malformation
  • DOI:
    10.1186/s13023-021-01946-7
  • 发表时间:
    2021-07-19
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Shengcai Wang;Wei Wang;Xuexi Zhang;Jingang Gui;Jie Zhang;Yongli Guo;Yuanhu Liu;Lin Han;Qiaoyin Liu;Yanzhen Li;Nian Sun;Zhiyong Liu;Jiangnan Du;Jun Tai;Xin Ni
  • 通讯作者:
    Xin Ni
Carbohydrate-lipid interactions: affinities of methylmannose polysaccharides for lipids in aqueous solution.
碳水化合物-脂质相互作用:甲基甘露糖多糖对水溶液中脂质的亲和力。
  • DOI:
    10.1002/chem.201201222
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lan Liu;Yu Bai;Nian Sun;Li Xia;T. Lowary;John S. Klassen
  • 通讯作者:
    John S. Klassen

Nian Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nian Sun', 18)}}的其他基金

Conference: The First International Symposium on Integrated Magnetics (iSIM-1)
会议:第一届国际集成磁学研讨会(iSIM-1)
  • 批准号:
    2309935
  • 财政年份:
    2023
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Standard Grant
FuSe/Collaborative Research: Heterogeneous Integration in Power Electronics for High-Performance Computing (HIPE-HPC)
FuSe/合作研究:用于高性能计算的电力电子异构集成 (HIPE-HPC)
  • 批准号:
    2329062
  • 财政年份:
    2023
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Continuing Grant
Collaborative Research: PIPP Workshop: Pandemic Readiness for Emerging Pathogens(PREP) to be Held February 15-19, 2021.
合作研究:PIPP 研讨会:新兴病原体大流行准备 (PREP) 将于 2021 年 2 月 15 日至 19 日举行。
  • 批准号:
    2113898
  • 财政年份:
    2021
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Standard Grant
RAPID: COVID-19: New Handheld Gas Sensors for Airborne SARS-CoV-2 Virus: Instant COVID-19 Diagnosis from Exhaled Breath
RAPID:COVID-19:针对空气传播的 SARS-CoV-2 病毒的新型手持式气体传感器:通过呼出气体进行即时 COVID-19 诊断
  • 批准号:
    2031142
  • 财政年份:
    2020
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Standard Grant
Novel Tunable Microwave Magnetoelectric Composite Materials and Devices with Metallic Magnetic Thin Film Materials
新型可调谐微波磁电复合材料及金属磁性薄膜器件
  • 批准号:
    0824008
  • 财政年份:
    2008
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Standard Grant
CAREER: Low-temperature Spin Spray Synthesized Magnetoelectric Nanocomposite Films for Novel RF and Microwave Devices
职业:用于新型射频和微波器件的低温旋转喷涂合成磁电纳米复合薄膜
  • 批准号:
    0746810
  • 财政年份:
    2008
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Continuing Grant
Materials World Network: Self-Assembled Nanocomposite Magnetoelectric Thin Films
材料世界网:自组装纳米复合磁电薄膜
  • 批准号:
    0603115
  • 财政年份:
    2006
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Continuing Grant

相似国自然基金

影像分型预测HAIC-FO优势肝癌人群及影 像基因组学的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
ATP合酶Fo基团在酸性环境的生理活性及其作用机制
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
烟曲霉F1Fo-ATP合成酶β亚基在侵袭性曲霉病发生中的作用及机制研究
  • 批准号:
    82304035
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白念珠菌F1Fo-ATP合酶中创新药靶的识别与确认研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
GRACE-FO高精度姿态数据处理及其对时变重力场影响的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
ATP合酶FO亚基参与调控弓形虫ATP合成的分子机制
  • 批准号:
    32202832
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
顾及GRACE-FO极轨特性的高分辨率Mascon时变重力场建模理论与方法
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
GRACE-FO微波测距系统原始数据处理、噪声分析与评估
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
利用GRACE-FO和中国重力卫星协同探测时变重力场和质量分布变化
  • 批准号:
    42061134010
  • 批准年份:
    2020
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目
联合GRACE/GRACE-FO和GNSS形变数据反演连续精细的区域地表质量变化
  • 批准号:
    41974015
  • 批准年份:
    2019
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目

相似海外基金

複数のFoトルク発生ユニットを持つATP合成酵素の創出
使用多个 Fo 扭矩产生单元创建 ATP 合酶
  • 批准号:
    24K01987
  • 财政年份:
    2024
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
NCS-FO: Brain-Informed Goal-Oriented and Bidirectional Deep Emotion Inference
NCS-FO:大脑知情的目标导向双向深度情感推理
  • 批准号:
    2318984
  • 财政年份:
    2023
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FO: Modified two-photon microscope with high-speed electrowetting array for imaging voltage transients in cerebellar molecular layer interneurons
合作研究:NCS-FO:带有高速电润湿阵列的改良双光子显微镜,用于对小脑分子层中间神经元的电压瞬变进行成像
  • 批准号:
    2319406
  • 财政年份:
    2023
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
  • 批准号:
    2319450
  • 财政年份:
    2023
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
  • 批准号:
    2319451
  • 财政年份:
    2023
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Standard Grant
NCS-FO: Understanding the computations the brain performs during choice
NCS-FO:了解大脑在选择过程中执行的计算
  • 批准号:
    2319580
  • 财政年份:
    2023
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
  • 批准号:
    2319449
  • 财政年份:
    2023
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Standard Grant
NCS-FO: Uncovering Dynamics of Neural Activity of Subjective Estimation of Time
NCS-FO:揭示主观时间估计的神经活动动态
  • 批准号:
    2319518
  • 财政年份:
    2023
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Continuing Grant
Collaborative Research: NCS-FO: A model-based approach to probe the role of spontaneous movements during decision-making
合作研究:NCS-FO:一种基于模型的方法,探讨自发运动在决策过程中的作用
  • 批准号:
    2350329
  • 财政年份:
    2023
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Standard Grant
NCS-FO: Functional and neural mechanisms of integrating multiple artificial somatosensory feedback signals in prosthesis control
NCS-FO:在假肢控制中集成多个人工体感反馈信号的功能和神经机制
  • 批准号:
    2327217
  • 财政年份:
    2023
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了