DMREF: Collaborative Research: Extreme Bandgap Semiconductors
DMREF:协作研究:极限带隙半导体
基本信息
- 批准号:1534221
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-10-01 至 2019-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMREF: Collaborative Research: Extreme Bandgap SemiconductorsNon-technical Description: The last two decades witnessed revolutionary advances in electronics and photonics by moving from ~1 electron Volt gap semiconductors (Silicon, Gallium Arsenide) to ~3 electron Volt Gallium Nitride and Silicon Carbide. This enabled energy-efficient light emitting diodes as replacement of incandescent bulbs, of high-voltage transistors that are cutting down wasted energy in every electrical device and machinery, and significantly expanded our fundamental knowledge of the materials science of semiconductors. Similar major advances are expected by aiming at extreme-bandgap semiconductors with energy gaps almost twice that of the wide-bandgap semiconductors. In addition to the new science, such materials will enable advances in healthcare and monitoring by creating deep-ultraviolet light-emitting diodes and lasers, and by significantly improving the efficiency and capability of semiconductors for electrical power conversion. Technical Description: Investigation of extreme-bandgap semiconductor materials with gaps of ~5-6 electron Volts has the potential to seed vast application arenas, and simultaneously advance fundamental material science and the physics of materials. The goal of this proposal is to develop the materials science of extreme bandgap semiconductors: Boron Nitride, Aluminum Nitride, their alloys and their heterostructures, and to investigate their properties for future applications in power electronics, deep-ultraviolet emitters, and more. Guided by rigorous mathematical and first-principles theory and modeling, the 4-investigator team will explore fundamental questions regarding epitaxial growth, polarization-induced conductivity control, band anti-crossing in highly mismatched materials, effects of isotope engineering on electronic and thermal transport. The proposed research project has the potential to be transformative in the field of material science and condensed matter physics under the umbrella of the Materials Genome Initiative because the research thrusts will develop: first principles predictive theory of electronic, optical, and thermal properties of these materials, epitaxy of these new semiconductors, isotope alloys and heterostructures, novel methods for controlling conductivity, understanding and control of the interplay of competing 3-dimensional vs 2-dimensional crystal phases, understanding of ultra high-field optical, electronic, thermal phenomena, of cation band-anticrossing physics, novel paradigms of isotope (neutron) engineering of optoelectronic, solid-state qubit, Cooper pairs, and thermoelectric properties. The proposed project will result in the training of graduate students in a fascinating emerging field of extreme bandgap semiconductor material science, with their many fundamental electronic, optical, and thermoelectric properties. In addition to expanding existing outreach programs, new activities with a special focus on the high-school students and underrepresented groups via Research Experiment for Teachers programs and direct visits for in-class demonstrations are proposed. That the team is distributed between Cornell, Michigan, and Stanford with complementary expertise will be exploited by regular exchange of graduate students for experiments, as well as theory and modeling work, to foster a truly collaborative mindset in the project. The dissemination of research by journal publications, presentations at conferences, its inclusion in courses taught by the invsetigators, and online (e.g. nanoHub) will ensure the outreach of the research proposed to the widest possible audience.
DMREF:协作研究:极端带隙半导体 - 技术描述:过去二十年来,通过从〜1个电子伏特间隙半导体(Silicon,凝胶木材)转移到〜3电子奈硝基和硅胶碳纤维,见证了电子和光子学的革命性进步。这使能节能发射二极管作为替代白炽灯泡,高压晶体管的替代,这些晶体管正在减少每个电气设备和机械中浪费的能量,并显着扩展了我们对半导体材料科学的基本知识。 通过针对极端gap的半导体,能量差距几乎是宽带半导体的两倍,可以预期类似的重大进展。 除了新科学外,这种材料还可以通过创建深粉料发光二极管和激光来实现医疗保健和监测的进步,并通过显着提高半导体对电力转换的效率和能力。 技术描述:对极限频率半导体材料的调查,差距为〜5-6电子伏特,有可能播种庞大的应用领域,同时推进基本材料科学和物理物理学。 该提案的目的是开发极端带隙半导体的材料科学:硝酸硼,氮化铝,其合金和异质结构,并调查其未来在电力电子,深层粉丝含量的应用中应用的特性。在严格的数学和第一原理理论和建模的指导下,4 investigator团队将探讨有关外延生长,极化诱导的电导率控制,高度不匹配的材料中的抗跨跨性材料的基本问题,同位素工程对电子传输的影响。 拟议的研究项目有可能在材料科学领域进行变革,并在材料基因组倡议的保护下进行凝结物理学领域,因为研究的推力将发展:这些材料的电子,光学和热性质的第一原理预测理论,这些新的半导体,同位素和杂志的竞争方式,用于控制这些新的半导体的相互作用,以了解这些新的半导体,并控制原理,并确定了竞争力的控制性。 3维与二维晶体相,了解超高场光学,电子,热现象,阳离子频段的物理学,同位素的新型范式(中子)工程的新型范式(中子)工程,固态,固态Qubit,Cooper Pairs和热电子特性。拟议的项目将在极端带隙半导体材料科学的引人入胜的新兴领域中培训研究生,并具有许多基本的电子,光学和热电特性。除了扩大现有的外展计划外,还提出了针对教师计划的研究实验,并提出了针对高中生和代表性不足的小组的新活动,并提出了直接访问课堂示威活动。定期交换研究生进行实验以及理论和建模工作,以培养项目中真正的协作思维方式,将利用该团队分布在康奈尔,密歇根州和斯坦福大学之间的互补专业知识。期刊出版物的研究,会议上的演讲,其包含在Invsetigators教授的课程中以及在线(例如NanoHub)将确保对最广泛的受众提出的研究的推广。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emmanouil Kioupakis其他文献
Emmanouil Kioupakis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emmanouil Kioupakis', 18)}}的其他基金
Collaborative Research: FuSe: Heterogeneous Integration of III-Nitride and Boron Arsenide for Enhanced Thermal and Electronic Performance
合作研究:FuSe:III族氮化物和砷化硼的异质集成以增强热和电子性能
- 批准号:
2329109 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: GeSnO2 Alloys for Next-Generation Semiconductor Devices
合作研究:FuSe:用于下一代半导体器件的 GeSnO2 合金
- 批准号:
2328701 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
ECCS-CDS&E: Predictive modeling of atomically thin multifunctional semiconductors
ECCS-CDS
- 批准号:
1607796 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: First-principles calculations of quantum processes in bulk and nanostructured semiconductors
职业:块体和纳米结构半导体中量子过程的第一原理计算
- 批准号:
1254314 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
临时团队协作历史对协作主动行为的影响研究:基于社会网络视角
- 批准号:72302101
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
- 批准号:
2325392 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant