DMREF: Collaborative Research: Extreme Bandgap Semiconductors
DMREF:协作研究:极限带隙半导体
基本信息
- 批准号:1534221
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-10-01 至 2019-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMREF: Collaborative Research: Extreme Bandgap SemiconductorsNon-technical Description: The last two decades witnessed revolutionary advances in electronics and photonics by moving from ~1 electron Volt gap semiconductors (Silicon, Gallium Arsenide) to ~3 electron Volt Gallium Nitride and Silicon Carbide. This enabled energy-efficient light emitting diodes as replacement of incandescent bulbs, of high-voltage transistors that are cutting down wasted energy in every electrical device and machinery, and significantly expanded our fundamental knowledge of the materials science of semiconductors. Similar major advances are expected by aiming at extreme-bandgap semiconductors with energy gaps almost twice that of the wide-bandgap semiconductors. In addition to the new science, such materials will enable advances in healthcare and monitoring by creating deep-ultraviolet light-emitting diodes and lasers, and by significantly improving the efficiency and capability of semiconductors for electrical power conversion. Technical Description: Investigation of extreme-bandgap semiconductor materials with gaps of ~5-6 electron Volts has the potential to seed vast application arenas, and simultaneously advance fundamental material science and the physics of materials. The goal of this proposal is to develop the materials science of extreme bandgap semiconductors: Boron Nitride, Aluminum Nitride, their alloys and their heterostructures, and to investigate their properties for future applications in power electronics, deep-ultraviolet emitters, and more. Guided by rigorous mathematical and first-principles theory and modeling, the 4-investigator team will explore fundamental questions regarding epitaxial growth, polarization-induced conductivity control, band anti-crossing in highly mismatched materials, effects of isotope engineering on electronic and thermal transport. The proposed research project has the potential to be transformative in the field of material science and condensed matter physics under the umbrella of the Materials Genome Initiative because the research thrusts will develop: first principles predictive theory of electronic, optical, and thermal properties of these materials, epitaxy of these new semiconductors, isotope alloys and heterostructures, novel methods for controlling conductivity, understanding and control of the interplay of competing 3-dimensional vs 2-dimensional crystal phases, understanding of ultra high-field optical, electronic, thermal phenomena, of cation band-anticrossing physics, novel paradigms of isotope (neutron) engineering of optoelectronic, solid-state qubit, Cooper pairs, and thermoelectric properties. The proposed project will result in the training of graduate students in a fascinating emerging field of extreme bandgap semiconductor material science, with their many fundamental electronic, optical, and thermoelectric properties. In addition to expanding existing outreach programs, new activities with a special focus on the high-school students and underrepresented groups via Research Experiment for Teachers programs and direct visits for in-class demonstrations are proposed. That the team is distributed between Cornell, Michigan, and Stanford with complementary expertise will be exploited by regular exchange of graduate students for experiments, as well as theory and modeling work, to foster a truly collaborative mindset in the project. The dissemination of research by journal publications, presentations at conferences, its inclusion in courses taught by the invsetigators, and online (e.g. nanoHub) will ensure the outreach of the research proposed to the widest possible audience.
DMREF:合作研究:极端带隙半导体非技术描述:过去二十年见证了电子和光子学的革命性进步,从~1电子伏隙半导体(硅,砷化镓)到~3电子伏氮化镓和碳化硅。这使得高能效发光二极管取代了白炽灯泡和高压晶体管,减少了所有电气设备和机械中浪费的能源,并大大扩展了我们对半导体材料科学的基础知识。类似的重大进展有望瞄准极端带隙半导体,其能隙几乎是宽带隙半导体的两倍。除了新科学之外,这种材料还将通过制造深紫外发光二极管和激光器,以及通过显着提高半导体的效率和电力转换能力,在医疗保健和监测方面取得进展。技术描述:研究具有~5-6电子伏特间隙的极端带隙半导体材料,有可能开辟广阔的应用领域,同时促进基础材料科学和材料物理学的发展。本提案的目标是发展极端带隙半导体的材料科学:氮化硼、氮化铝、它们的合金和异质结构,并研究它们的特性,以用于未来在电力电子、深紫外发射器等方面的应用。在严格的数学和第一性原理理论和模型的指导下,4名研究人员将探索有关外延生长、极化诱导电导率控制、高度不匹配材料中的能带抗交叉、同位素工程对电子和热输运的影响等基本问题。在材料基因组计划的保护下,拟议的研究项目有可能在材料科学和凝聚态物理领域产生变革,因为研究重点将发展:这些材料的电子、光学和热性质的第一性原理预测理论,这些新的半导体、同位素合金和异质结构的外延,控制电导率的新方法,理解和控制竞争的三维和二维晶体相的相互作用,理解超高场光学、电子、热现象,阳离子带抗交叉物理,光电同位素(中子)工程的新范例,固态量子比特,库珀对和热电性质。该项目将培养具有许多基本电子、光学和热电性质的极带隙半导体材料科学这一令人着迷的新兴领域的研究生。除了扩大现有的外展计划外,还建议通过教师研究实验计划和直接访问课堂演示,特别关注高中生和代表性不足的群体的新活动。该团队分布在康奈尔大学、密歇根大学和斯坦福大学之间,具有互补的专业知识,将通过定期交换研究生进行实验、理论和建模工作来利用,从而在项目中培养真正的协作心态。通过期刊出版物、会议报告、将其纳入研究者讲授的课程以及在线(例如nanoHub)传播研究,将确保所提议的研究向尽可能广泛的受众推广。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emmanouil Kioupakis其他文献
Protecting the properties of monolayer MoS2 on silicon based substrates with an atomically thin buffer
用原子级薄缓冲层保护硅基衬底上单层 MoS2 的性能
- DOI:
10.1038/srep20890 - 发表时间:
2016-02-12 - 期刊:
- 影响因子:3.900
- 作者:
Michael K. L. Man;Skylar Deckoff-Jones;Andrew Winchester;Guangsha Shi;Gautam Gupta;Aditya D. Mohite;Swastik Kar;Emmanouil Kioupakis;Saikat Talapatra;Keshav M. Dani - 通讯作者:
Keshav M. Dani
Emmanouil Kioupakis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emmanouil Kioupakis', 18)}}的其他基金
Collaborative Research: FuSe: Heterogeneous Integration of III-Nitride and Boron Arsenide for Enhanced Thermal and Electronic Performance
合作研究:FuSe:III族氮化物和砷化硼的异质集成以增强热和电子性能
- 批准号:
2329109 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: GeSnO2 Alloys for Next-Generation Semiconductor Devices
合作研究:FuSe:用于下一代半导体器件的 GeSnO2 合金
- 批准号:
2328701 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
ECCS-CDS&E: Predictive modeling of atomically thin multifunctional semiconductors
ECCS-CDS
- 批准号:
1607796 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: First-principles calculations of quantum processes in bulk and nanostructured semiconductors
职业:块体和纳米结构半导体中量子过程的第一原理计算
- 批准号:
1254314 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
- 批准号:
2323936 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant