CAREER: First-principles calculations of quantum processes in bulk and nanostructured semiconductors

职业:块体和纳米结构半导体中量子过程的第一原理计算

基本信息

项目摘要

TECHNICAL SUMMARYThis CAREER award is made on funds from the Division of Advanced Computing Infrastructure and the Division of Materials Research. It supports an integrated research and educational program on the theoretical study of quantum processes in materials using first-principles computational methods. Quantum processes play a crucial role in the operation and efficiency of modern electronic, optoelectronic, photovoltaic, and thermoelectric devices. Theoretical studies can provide insight into the microscopic mechanisms that govern quantum processes in materials but are inaccessible to experiment. First-principles methods based on density functional theory enable the predictive calculation of the electronic properties of materials entirely from theory, without empirical or adjustable parameters.This research program will focus on quantum processes in technologically important bulk and nanostructured semiconducting materials. The role of scattering mechanisms such as carrier-phonon and carrier-carrier coupling will be explicitly evaluated with density-functional and many-body perturbation theory, respectively. In combination with the Boltzmann equation formalism, these studies will provide valuable insight on the nature and significance of microscopic quantum processes during carrier transport in devices. Studies of optical absorption by free carriers and nonradiative Auger recombination will elucidate the microscopic nature of these parasitic quantum processes and their role in the operation and efficiency of optoelectronic devices.The research program will be integrated with educational activities through the incorporation of numerical calculations and computer simulations in the undergraduate and graduate curriculum and the training of graduate and undergraduate students. Proposed outreach activities aim to assist students from community colleges in making the transition to Engineering at the University of Michigan. The effectiveness of the educational program will be evaluated by education professionals at the Center of Research on Learning and Teaching at the University of Michigan. Computer codes for the predictive theoretical calculation of quantum processes will be created and shared with the educational and research communities with the intent to contribute to software reuse and the software cyberinfrastructure of the materials research community.NONTECHNICAL SUMMARYThis CAREER award is made on funds from the Division of Advanced Computing Infrastructure and the Division of Materials Research. It supports an integrated research and educational program on the theoretical study of quantum phenomena in materials with predictive computational methods. Semiconductor devices have significant impact on modern society and improve our quality of life. For example, transistors are the fundamental components of computers that are a cornerstone of the Information Age. Semiconductor lasers enable high-speed fiber-optics communications, while light-emitting diodes are novel light sources that can replace incandescent and fluorescent light bulbs. Solar cells are used to produce electricity from sunlight, while thermoelectric devices can convert heat directly into electricity and power deep-space probes such as the NASA Curiosity rover on Mars. The motion of electrons in the underlying semiconducting materials, described by the laws of quantum mechanics, lies at the foundations of how these devices operate.The goal of this research program is to develop and apply predictive computational tools in order to understand the properties in semiconducting materials related to the transport of electrons through the material. This work will focus on how the motion of electrons is affected by their interactions with each other and with atomic vibrations. This study will also focus on how certain quantum processes cause energy loss in semiconductor devices. The results obtained from this work will assist in the development of better-performing and energetically more efficient semiconductor devices.The research program will be integrated with educational activities through the incorporation of numerical calculations and computer simulations in the undergraduate and graduate curriculum and the training of graduate and undergraduate students. Proposed outreach activities aim to assist students from community colleges in transitioning to Engineering at the University of Michigan. The effectiveness of the educational program will be evaluated by education professionals at the Center of Research on Learning and Teaching at the University of Michigan. Computer codes for the predictive theoretical calculation of quantum processes will be created and shared with the educational and research communities with the intent to contribute to software reuse and the software cyberinfrastructure of the materials research community.
技术摘要这一职业奖是根据高级计算基础设施和材料研究部的资金颁发的。它支持使用第一原理计算方法对材料中量子过程进行理论研究的综合研究和教育计划。量子过程在现代电子,光电,光伏和热电设备的运行和效率中起着至关重要的作用。理论研究可以提供对控制材料中量子过程但实验无法访问的微观机制的见解。基于密度功能理论的第一原理方法能够完全从理论中对材料的电子特性进行预测计算,而无需经验或可调参数。该研究计划将重点关注技术上重要的体积和纳米结构的半导体材料中的量子过程。分别用密度功能和多体扰动理论分别评估散射机制(例如载波和载体耦合)等散射机制的作用。结合Boltzmann方程形式主义,这些研究将提供对设备中载体运输过程中微观量子过程的性质和意义的宝贵见解。自由载体和非放射性俄歇重组的光学吸收的研究将阐明这些寄生量子过程的显微镜性质及其在光电式刀具的运行和效率中的作用。拟议的外展活动旨在帮助社区大学的学生在密歇根大学过渡到工程。教育计划的有效性将由密歇根大学学习和教学研究中心的教育专业人员评估。将创建量子过程的预测理论计算的计算机代码,并与教育和研究社区共享,目的是有助于软件再利用和材料研究社区的软件网络基础结构。本地技术摘要颁发的职业奖是由高级计算基础设施和材料研究部门的资金颁布的。它支持具有预测计算方法材料中量子现象的理论研究的综合研究和教育计划。半导体设备对现代社会产生重大影响,并改善我们的生活质量。例如,晶体管是计算机的基本组件,它们是信息时代的基石。半导体激光器可实现高速光纤通信,而发光二极管是可以取代白炽和荧光灯泡的新型光源。太阳能电池用于从阳光下发电,而热电设备可以直接转换为电力和电力深空探针,例如火星上的NASA好奇心漫游者。量子力学定律描述的基础半导体材料中电子的运动在于这些设备如何运行的基础。该研究计划的目标是开发和应用预测性计算工具,以了解与电子传输通过材料相关的半导体材料的性质。这项工作将集中于电子的运动如何受到彼此相互作用以及原子振动的影响。这项研究还将集中于某些量子过程如何导致半导体设备的能量损失。从这项工作中获得的结果将有助于开发出色和能量更有效的半导体设备。该研究计划将通过在本科和研究生课程中纳入数字计算和计算机模拟,并将其与教育活动融为一体。拟议的外展活动旨在帮助社区大学的学生过渡到密歇根大学的工程。教育计划的有效性将由密歇根大学学习和教学研究中心的教育专业人员评估。量子过程的预测理论计算计算机代码将与教育和研究社区共享并共享,以促进软件重复使用和材料研究界的软件网络基础结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emmanouil Kioupakis其他文献

Emmanouil Kioupakis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emmanouil Kioupakis', 18)}}的其他基金

Collaborative Research: FuSe: Heterogeneous Integration of III-Nitride and Boron Arsenide for Enhanced Thermal and Electronic Performance
合作研究:FuSe:III族氮化物和砷化硼的异质集成以增强热和电子性能
  • 批准号:
    2329109
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: GeSnO2 Alloys for Next-Generation Semiconductor Devices
合作研究:FuSe:用于下一代半导体器件的 GeSnO2 合金
  • 批准号:
    2328701
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
ECCS-CDS&E: Predictive modeling of atomically thin multifunctional semiconductors
ECCS-CDS
  • 批准号:
    1607796
  • 财政年份:
    2016
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: Extreme Bandgap Semiconductors
DMREF:协作研究:极限带隙半导体
  • 批准号:
    1534221
  • 财政年份:
    2015
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant

相似国自然基金

铁电衬底上单分子磁性的第一性原理研究
  • 批准号:
    12304089
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型二维碲基和硒基材料结构预测和体光伏效应的第一性原理研究
  • 批准号:
    12304083
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Janus磁性材料的二维多铁隧道结的第一性原理研究
  • 批准号:
    12304121
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
镧系和锕系化合物中拓扑近藤半金属态的强关联第一性原理研究
  • 批准号:
    12364023
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
光自敏化驱动芳香类新污染物降解新途径的第一性原理研究
  • 批准号:
    22376220
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
  • 批准号:
    2337987
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
  • 批准号:
    2339995
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Electrochemical Metal Extraction in Molten Salts from First Principles
职业:从第一原理了解熔盐中的电化学金属萃取
  • 批准号:
    2340765
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
CAREER: Quantum Coherence, Optical Readout, and Quantum Transduction for Spin Qubits from First-Principles Calculations
职业:基于第一原理计算的自旋量子位的量子相干性、光学读出和量子传导
  • 批准号:
    2342876
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了