CAREER: First-principles calculations of quantum processes in bulk and nanostructured semiconductors

职业:块体和纳米结构半导体中量子过程的第一原理计算

基本信息

项目摘要

TECHNICAL SUMMARYThis CAREER award is made on funds from the Division of Advanced Computing Infrastructure and the Division of Materials Research. It supports an integrated research and educational program on the theoretical study of quantum processes in materials using first-principles computational methods. Quantum processes play a crucial role in the operation and efficiency of modern electronic, optoelectronic, photovoltaic, and thermoelectric devices. Theoretical studies can provide insight into the microscopic mechanisms that govern quantum processes in materials but are inaccessible to experiment. First-principles methods based on density functional theory enable the predictive calculation of the electronic properties of materials entirely from theory, without empirical or adjustable parameters.This research program will focus on quantum processes in technologically important bulk and nanostructured semiconducting materials. The role of scattering mechanisms such as carrier-phonon and carrier-carrier coupling will be explicitly evaluated with density-functional and many-body perturbation theory, respectively. In combination with the Boltzmann equation formalism, these studies will provide valuable insight on the nature and significance of microscopic quantum processes during carrier transport in devices. Studies of optical absorption by free carriers and nonradiative Auger recombination will elucidate the microscopic nature of these parasitic quantum processes and their role in the operation and efficiency of optoelectronic devices.The research program will be integrated with educational activities through the incorporation of numerical calculations and computer simulations in the undergraduate and graduate curriculum and the training of graduate and undergraduate students. Proposed outreach activities aim to assist students from community colleges in making the transition to Engineering at the University of Michigan. The effectiveness of the educational program will be evaluated by education professionals at the Center of Research on Learning and Teaching at the University of Michigan. Computer codes for the predictive theoretical calculation of quantum processes will be created and shared with the educational and research communities with the intent to contribute to software reuse and the software cyberinfrastructure of the materials research community.NONTECHNICAL SUMMARYThis CAREER award is made on funds from the Division of Advanced Computing Infrastructure and the Division of Materials Research. It supports an integrated research and educational program on the theoretical study of quantum phenomena in materials with predictive computational methods. Semiconductor devices have significant impact on modern society and improve our quality of life. For example, transistors are the fundamental components of computers that are a cornerstone of the Information Age. Semiconductor lasers enable high-speed fiber-optics communications, while light-emitting diodes are novel light sources that can replace incandescent and fluorescent light bulbs. Solar cells are used to produce electricity from sunlight, while thermoelectric devices can convert heat directly into electricity and power deep-space probes such as the NASA Curiosity rover on Mars. The motion of electrons in the underlying semiconducting materials, described by the laws of quantum mechanics, lies at the foundations of how these devices operate.The goal of this research program is to develop and apply predictive computational tools in order to understand the properties in semiconducting materials related to the transport of electrons through the material. This work will focus on how the motion of electrons is affected by their interactions with each other and with atomic vibrations. This study will also focus on how certain quantum processes cause energy loss in semiconductor devices. The results obtained from this work will assist in the development of better-performing and energetically more efficient semiconductor devices.The research program will be integrated with educational activities through the incorporation of numerical calculations and computer simulations in the undergraduate and graduate curriculum and the training of graduate and undergraduate students. Proposed outreach activities aim to assist students from community colleges in transitioning to Engineering at the University of Michigan. The effectiveness of the educational program will be evaluated by education professionals at the Center of Research on Learning and Teaching at the University of Michigan. Computer codes for the predictive theoretical calculation of quantum processes will be created and shared with the educational and research communities with the intent to contribute to software reuse and the software cyberinfrastructure of the materials research community.
技术总结该职业奖由高级计算基础设施部和材料研究部提供资金。它支持使用第一原理计算方法对材料中量子过程进行理论研究的综合研究和教育计划。量子过程在现代电子、光电、光伏和热电器件的操作和效率中起着至关重要的作用。理论研究可以提供对材料中控制量子过程的微观机制的深入了解,但无法通过实验获得。基于密度泛函理论的第一性原理方法可以完全从理论上预测计算材料的电子性质,而无需经验或可调参数。该研究计划将专注于技术上重要的块状和纳米结构半导体材料的量子过程。散射机制,如载流子-声子和载流子-载流子耦合的作用将明确评估与密度泛函和多体微扰理论,分别。结合玻尔兹曼方程形式主义,这些研究将提供有价值的洞察力的性质和意义的微观量子过程中的载流子输运设备。自由载流子的光吸收和非辐射俄歇复合的研究将阐明这些寄生量子过程的微观本质及其在光电器件的操作和效率中的作用。该研究计划将通过将数值计算和计算机模拟纳入本科和研究生课程以及研究生和本科生的培训与教育活动相结合。拟议的外联活动旨在帮助社区学院的学生过渡到密歇根大学的工程专业。教育计划的有效性将由密歇根大学学习与教学研究中心的教育专业人员进行评估。量子过程的预测理论计算的计算机代码将被创建并与教育和研究社区共享,旨在为软件重用和材料研究社区的软件网络基础设施做出贡献。非技术总结这个职业奖是由先进计算基础设施部门和材料研究部门提供的资金。它支持一个综合的研究和教育计划,对材料中的量子现象进行理论研究,并采用预测计算方法。半导体器件对现代社会产生了重大影响,提高了我们的生活质量。例如,晶体管是计算机的基本组件,是信息时代的基石。半导体激光器可以实现高速光纤通信,而发光二极管是可以取代白炽灯和荧光灯泡的新型光源。太阳能电池用于从太阳光中产生电力,而热电装置可以将热量直接转化为电力,并为深空探测器提供动力,例如NASA火星探测器。电子在底层半导体材料中的运动由量子力学定律描述,是这些器件如何工作的基础。该研究计划的目标是开发和应用预测计算工具,以了解与电子通过材料传输相关的半导体材料的特性。这项工作将集中在电子的运动是如何受到它们之间的相互作用和原子振动的影响。这项研究还将关注某些量子过程如何导致半导体器件中的能量损失。从这项工作中获得的结果将有助于开发性能更好,能量更有效的半导体器件。该研究计划将通过将数值计算和计算机模拟纳入本科和研究生课程以及研究生和本科生的培训,与教育活动相结合。拟议的外联活动旨在帮助社区学院的学生过渡到密歇根大学的工程专业。教育计划的有效性将由密歇根大学学习与教学研究中心的教育专业人员进行评估。将创建用于量子过程预测理论计算的计算机代码,并与教育和研究界共享,旨在为材料研究界的软件重用和软件网络基础设施做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emmanouil Kioupakis其他文献

Protecting the properties of monolayer MoS2 on silicon based substrates with an atomically thin buffer
用原子级薄缓冲层保护硅基衬底上单层 MoS2 的性能
  • DOI:
    10.1038/srep20890
  • 发表时间:
    2016-02-12
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Michael K. L. Man;Skylar Deckoff-Jones;Andrew Winchester;Guangsha Shi;Gautam Gupta;Aditya D. Mohite;Swastik Kar;Emmanouil Kioupakis;Saikat Talapatra;Keshav M. Dani
  • 通讯作者:
    Keshav M. Dani

Emmanouil Kioupakis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emmanouil Kioupakis', 18)}}的其他基金

Collaborative Research: FuSe: Heterogeneous Integration of III-Nitride and Boron Arsenide for Enhanced Thermal and Electronic Performance
合作研究:FuSe:III族氮化物和砷化硼的异质集成以增强热和电子性能
  • 批准号:
    2329109
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: GeSnO2 Alloys for Next-Generation Semiconductor Devices
合作研究:FuSe:用于下一代半导体器件的 GeSnO2 合金
  • 批准号:
    2328701
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
ECCS-CDS&E: Predictive modeling of atomically thin multifunctional semiconductors
ECCS-CDS
  • 批准号:
    1607796
  • 财政年份:
    2016
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: Extreme Bandgap Semiconductors
DMREF:协作研究:极限带隙半导体
  • 批准号:
    1534221
  • 财政年份:
    2015
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant

相似国自然基金

“Lignin-first”策略下镁碱催化原生木质素定向氧化为小分子有机酸的机制研究
  • 批准号:
    21908075
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于First Principles的光催化降解PPCPs同步脱氮体系构建及其电子分配机制研究
  • 批准号:
    51778175
  • 批准年份:
    2017
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
  • 批准号:
    2337987
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
  • 批准号:
    2339995
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Electrochemical Metal Extraction in Molten Salts from First Principles
职业:从第一原理了解熔盐中的电化学金属萃取
  • 批准号:
    2340765
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
CAREER: Electronic and Optical Properties in Generalized Moire Systems from First Principles
职业:从第一原理看广义莫尔系统的电子和光学特性
  • 批准号:
    2238328
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
CAREER: Advancing Atomic-Level Understanding of Kinetically Driven Solid-Solid Phase Transitions from First Principles and Machine Learning
职业:从第一原理和机器学习推进对动力学驱动的固-固相变的原子级理解
  • 批准号:
    2238516
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
CAREER: Quantum Coherence, Optical Readout, and Quantum Transduction for Spin Qubits from First-Principles Calculations
职业:基于第一原理计算的自旋量子位的量子相干性、光学读出和量子传导
  • 批准号:
    2342876
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
CAREER: Molecular Mechanisms Underlying Redox Chemistry in Electrochemical Cells from First Principles
职业:从第一原理开始研究电化学电池中氧化还原化学的分子机制
  • 批准号:
    2145144
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
CAREER: First Principles Design of Error-Corrected Solid-State Quantum Repeaters
职业:纠错固态量子中继器的第一原理设计
  • 批准号:
    2246394
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
CAREER: Quantum Coherence, Optical Readout, and Quantum Transduction for Spin Qubits from First-Principles Calculations
职业:基于第一原理计算的自旋量子位的量子相干性、光学读出和量子传导
  • 批准号:
    2143233
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了