Bayesian Methods for Meta-Analysis in the Presence of Publication Bias
存在发表偏倚的贝叶斯荟萃分析方法
基本信息
- 批准号:1534472
- 负责人:
- 金额:$ 26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The differential rate of publishing between positive and negative results, which has been called publication bias, is of increasing concern in the social and behavioral sciences. This research project will develop a new approach to meta-analysis that explicitly takes into account the possibility of a biased publication process. Meta-analysis has been instrumental in interpreting the claims made in the academic literature. However, academic journals, especially in the social and behavioral sciences, seem to strongly prefer manuscripts that posit the existence of an effect rather than non-significant outcomes. This hinders classical meta-analysis methods because the aggregate of a biased set of empirical results will be biased as well. The new approach will allow for better aggregation of published results and will provide a more accurate view of the effect of various experimental manipulations and treatments. Software will be developed and published that implements this approach for a variety of situations.This research project will develop a new approach to meta-analysis called "statistical mitigation" that combines behavioral models with state-of-the-art statistical methods. The approach will be based on a Bayesian model averaging technique in which effect size estimates are computed using a set of plausible selection models and averaging across these selection models. With this approach, it will be possible to isolate the signal of true effects within the noise of measurement error. The investigator will test the method under various circumstances, compare the new approach to existing methods for inference in the presence of publication bias, and perform simulations to assess the efficiency of the method. With a single approach to meta-analysis, researchers will be able to account for the possibility of publication bias, confirm or disconfirm null and non-null hypotheses, and do effect size estimation.
正面和负面结果之间的发表率差异(称为发表偏差)在社会科学和行为科学中越来越受到关注。 该研究项目将开发一种新的荟萃分析方法,明确考虑发表过程中存在偏见的可能性。 荟萃分析有助于解释学术文献中的主张。 然而,学术期刊,尤其是社会科学和行为科学领域的学术期刊,似乎更喜欢假设存在效果而不是不显着结果的手稿。 这阻碍了经典的荟萃分析方法,因为一组有偏见的实证结果的汇总也会有偏见。 新方法将允许更好地汇总已发表的结果,并将更准确地了解各种实验操作和治疗的效果。 将开发和发布在各种情况下实施这种方法的软件。该研究项目将开发一种称为“统计缓解”的新元分析方法,该方法将行为模型与最先进的统计方法相结合。 该方法将基于贝叶斯模型平均技术,其中使用一组合理的选择模型并对这些选择模型进行平均来计算效应大小估计。 通过这种方法,可以在测量误差的噪声中隔离真实效应的信号。 研究者将在各种情况下测试该方法,在存在发表偏倚的情况下将新方法与现有的推理方法进行比较,并进行模拟以评估该方法的效率。 通过单一的荟萃分析方法,研究人员将能够解释发表偏倚的可能性,确认或否定无效和非无效假设,并进行效应大小估计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joachim Vandekerckhove其他文献
Deep latent variable joint cognitive modeling of neural signals and human behavior
- DOI:
10.1016/j.neuroimage.2024.120559 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:
- 作者:
Khuong Vo;Qinhua Jenny Sun;Michael D. Nunez;Joachim Vandekerckhove;Ramesh Srinivasan - 通讯作者:
Ramesh Srinivasan
Bayesian Graphical Modeling with the Circular Drift Diffusion Model
使用圆形漂移扩散模型的贝叶斯图形建模
- DOI:
10.1007/s42113-023-00191-4 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Manuel Villarreal;Adriana F Chávez de la Peña;Percy Mistry;Vinod Menon;Joachim Vandekerckhove;Michael D. Lee - 通讯作者:
Michael D. Lee
An EZ Bayesian hierarchical drift diffusion model for response time and accuracy
- DOI:
10.3758/s13423-025-02729-y - 发表时间:
2025-07-25 - 期刊:
- 影响因子:3.000
- 作者:
Adriana F. Chávez De la Peña;Joachim Vandekerckhove - 通讯作者:
Joachim Vandekerckhove
Where’s Waldo, Ohio? Using Cognitive Models to Improve the Aggregation of Spatial Knowledge
俄亥俄州沃尔多在哪里?使用认知模型来改善空间知识的聚合
- DOI:
10.1007/s42113-024-00200-0 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Lauren E. Montgomery;Charles M. Baldini;Joachim Vandekerckhove;Michael D. Lee - 通讯作者:
Michael D. Lee
A Bayesian approach to mitigation of publication bias
- DOI:
10.3758/s13423-015-0868-6 - 发表时间:
2015-07-01 - 期刊:
- 影响因子:3.000
- 作者:
Maime Guan;Joachim Vandekerckhove - 通讯作者:
Joachim Vandekerckhove
Joachim Vandekerckhove的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joachim Vandekerckhove', 18)}}的其他基金
Exploratory and Confirmatory Neurocognitive Modeling with Latent Variables
具有潜在变量的探索性和验证性神经认知模型
- 批准号:
2051186 - 财政年份:2021
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Critical tests of neurocognitive relationships
神经认知关系的关键测试
- 批准号:
1850849 - 财政年份:2019
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
RR: Workshop on Robust Social and Behavioral Sciences
RR:稳健的社会和行为科学研讨会
- 批准号:
1754205 - 财政年份:2018
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Estimation of Unidentified Cognitive Models with Physiological Data
用生理数据估计未知的认知模型
- 批准号:
1658303 - 财政年份:2017
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Conference: Support for the 2015 Annual Meeting of the Society for Mathematical Psychology
会议:支持数学心理学会2015年年会
- 批准号:
1534170 - 财政年份:2015
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Systematic Reviews and Meta-Analysis of Prognosis Studies (REVAMP): development of core methods, reporting guidelines and a methodology handbook
预后研究的系统评价和荟萃分析 (REVAMP):制定核心方法、报告指南和方法手册
- 批准号:
MR/V038168/2 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Research Grant
Meta-analytic methods for rare disorders
罕见疾病的荟萃分析方法
- 批准号:
573713-2022 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
University Undergraduate Student Research Awards
Methods to unveil sex-specific genetic architecture in trans-ancestry meta-analysis
在跨祖先荟萃分析中揭示性别特异性遗传结构的方法
- 批准号:
10445464 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Exploring and developing methods for meta-analyses in updated and living systematic reviews.
探索和开发更新和实时系统评价中的荟萃分析方法。
- 批准号:
475567 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Studentship Programs
Methods to unveil sex-specific genetic architecture in trans-ancestry meta-analysis
在跨祖先荟萃分析中揭示性别特异性遗传结构的方法
- 批准号:
10681351 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Investigating Effective Methods that Adults Use to Improve Children's Math Achievement in Informal Learning Environments: A Meta Analysis
调查成人在非正式学习环境中提高儿童数学成绩的有效方法:荟萃分析
- 批准号:
2313440 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Dialogue Methods of Deepen Meta Thinking in Public Health Nursing
公共卫生护理中深化元思维的对话方法
- 批准号:
22K11201 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Systematic Reviews and Meta-Analysis of Prognosis Studies (REVAMP): development of core methods, reporting guidelines and a methodology handbook
预后研究的系统评价和荟萃分析 (REVAMP):制定核心方法、报告指南和方法手册
- 批准号:
MR/V038168/1 - 财政年份:2021
- 资助金额:
$ 26万 - 项目类别:
Research Grant
Methods to Identify, Validate & Interpret GWAS Loci in Multi-ethnic Meta-analysis
识别、验证方法
- 批准号:
10291183 - 财政年份:2021
- 资助金额:
$ 26万 - 项目类别:
Investigating Effective Methods that Adults Use to Improve Children's Math Achievement in Informal Learning Environments: A Meta Analysis
调查成人在非正式学习环境中提高儿童数学成绩的有效方法:荟萃分析
- 批准号:
2000292 - 财政年份:2020
- 资助金额:
$ 26万 - 项目类别:
Standard Grant