Exploratory and Confirmatory Neurocognitive Modeling with Latent Variables

具有潜在变量的探索性和验证性神经认知模型

基本信息

  • 批准号:
    2051186
  • 负责人:
  • 金额:
    $ 34.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

This research project will improve methods for analyzing brain and behavior measurements. Existing methods for combining multiple sources of brain data are limited. They cannot take advantage of the joint measurement of different kinds of brain activity to predict behavior. This project will combine multiple recent developments in mathematical psychology and cognitive neuroscience to arrive at a powerful new data analysis method that can process many sources of data at once. The methods to be developed will identify the shared and unique contributions of brain regions to behavior and can be used to discover new functions of brain regions. Broader use of these methods also will facilitate theory-building in cognitive (neuro)science. The project will involve early-career scientists who will receive training in neuroscience or cognitive science. The investigators will document their modeling techniques as part of a series of publicly available video lectures. The project also will develop a large code base and user-friendly software, thus contributing to the global research and education infrastructure.This project will combine recent developments in mathematical psychology (Bayesian latent variable modeling with cognitive models) and cognitive neuroscience (modeling of neurocognitive relationships) to develop new methods for analyzing brain data. Current approaches to brain-data analysis emphasize looking for separate relationships between individual physiological measures and behavior. Direct analysis of the relationship between different types of physiological measures usually does not involve behavioral data. Identification of the processes that give rise to patterns in different measures is carried out without direct links to behavior. However, multiple neuroimaging techniques can provide common underlying information that informs cognitive models of human behavior as well as the physical location of the ongoing processes. For instance, both fMRI and EEG are driven, at least in part, by the same underlying neural processes. At the same time, each technique also contains unique information, so that some cognitive processes underlying human behavior can potentially only be informed by specific techniques or combinations thereof. This project will make it possible to translate such theories about these complex relationships into principled statistical models whose predictions and assumptions can be put to the empirical test. The new methods will be applied to archival data sets, thus contributing to generalizable knowledge in a way that is cost-effective and ethical.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究项目将改进分析大脑和行为测量的方法。现有的组合多源大脑数据的方法是有限的。他们不能利用不同类型的大脑活动的联合测量来预测行为。该项目将结合数学心理学和认知神经科学的多种最新发展,得出一种强大的新数据分析方法,可以同时处理多种来源的数据。即将开发的方法将识别大脑区域对行为的共同和独特贡献,并可用于发现大脑区域的新功能。这些方法的广泛使用也将促进认知(神经)科学的理论建设。该项目将包括职业生涯早期的科学家,他们将接受神经科学或认知科学方面的培训。研究人员将记录他们的建模技术,作为一系列公开视频讲座的一部分。该项目还将开发大型代码库和用户友好的软件,从而为全球研究和教育基础设施做出贡献。该项目将结合数学心理学(贝叶斯潜变量建模与认知模型)和认知神经科学(神经认知关系建模)的最新发展,开发分析大脑数据的新方法。目前的大脑数据分析方法强调寻找个体生理测量和行为之间的独立关系。直接分析不同类型的生理测量之间的关系通常不涉及行为数据。识别在不同衡量标准中产生模式的过程是在没有与行为直接联系的情况下进行的。然而,多种神经成像技术可以提供共同的潜在信息,为人类行为的认知模型以及正在进行的过程的物理位置提供信息。例如,fMRI和EEG至少在一定程度上都是由相同的潜在神经过程驱动的。同时,每种技术也包含独特的信息,因此人类行为背后的一些认知过程可能只能通过特定的技术或其组合来获得信息。这个项目将有可能将这些关于这些复杂关系的理论转化为有原则的统计模型,这些模型的预测和假设可以进行实证检验。新方法将应用于档案数据集,从而以一种具有成本效益和伦理的方式促进概括性知识。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Parsing memory and nonmemory contributions to age-related declines in mnemonic discrimination performance: a hierarchical Bayesian diffusion decision modeling approach.
解析记忆和非记忆对助记辨别性能与年龄相关的下降的贡献:分层贝叶斯扩散决策建模方法。
  • DOI:
    10.1101/lm.053838.123
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chwiesko,Caroline;Janecek,John;Doering,Stephanie;Hollearn,Martina;McMillan,Liv;Vandekerckhove,Joachim;Lee,MichaelD;Ratcliff,Roger;Yassa,MichaelA
  • 通讯作者:
    Yassa,MichaelA
Cortico-Brainstem Mechanisms of Biased Perceptual Decision-Making in the Context of Pain
  • DOI:
    10.1016/j.jpain.2021.11.006
  • 发表时间:
    2022-04-02
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Wiech,Katja;Eippert,Falk;Tracey,Irene
  • 通讯作者:
    Tracey,Irene
Decision SincNet: Neurocognitive models of decision making that predict cognitive processes from neural signals
  • DOI:
    10.1109/ijcnn55064.2022.9892272
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qi Sun;Khuong Vo;K. Lui;Michael D. Nunez;J. Vandekerckhove;R. Srinivasan
  • 通讯作者:
    Qi Sun;Khuong Vo;K. Lui;Michael D. Nunez;J. Vandekerckhove;R. Srinivasan
Piecewise Linear and Stochastic Models for the Analysis of Cyber Resilience
用于网络弹性分析的分段线性和随机模型
Composing Graphical Models with Generative Adversarial Networks for EEG Signal Modeling
使用生成对抗网络构建图形模型进行脑电图信号建模
  • DOI:
    10.1109/icassp43922.2022.9747783
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vo, Khuong;Vishwanath, Manoj;Srinivasan, Ramesh;Dutt, Nikil;Cao, Hung
  • 通讯作者:
    Cao, Hung
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joachim Vandekerckhove其他文献

Deep latent variable joint cognitive modeling of neural signals and human behavior
  • DOI:
    10.1016/j.neuroimage.2024.120559
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Khuong Vo;Qinhua Jenny Sun;Michael D. Nunez;Joachim Vandekerckhove;Ramesh Srinivasan
  • 通讯作者:
    Ramesh Srinivasan
Bayesian Graphical Modeling with the Circular Drift Diffusion Model
使用圆形漂移扩散模型的贝叶斯图形建模
  • DOI:
    10.1007/s42113-023-00191-4
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Manuel Villarreal;Adriana F Chávez de la Peña;Percy Mistry;Vinod Menon;Joachim Vandekerckhove;Michael D. Lee
  • 通讯作者:
    Michael D. Lee
An EZ Bayesian hierarchical drift diffusion model for response time and accuracy
  • DOI:
    10.3758/s13423-025-02729-y
  • 发表时间:
    2025-07-25
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Adriana F. Chávez De la Peña;Joachim Vandekerckhove
  • 通讯作者:
    Joachim Vandekerckhove
Where’s Waldo, Ohio? Using Cognitive Models to Improve the Aggregation of Spatial Knowledge
俄亥俄州沃尔多在哪里?使用认知模型来改善空间知识的聚合
  • DOI:
    10.1007/s42113-024-00200-0
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lauren E. Montgomery;Charles M. Baldini;Joachim Vandekerckhove;Michael D. Lee
  • 通讯作者:
    Michael D. Lee
A Bayesian approach to mitigation of publication bias
  • DOI:
    10.3758/s13423-015-0868-6
  • 发表时间:
    2015-07-01
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Maime Guan;Joachim Vandekerckhove
  • 通讯作者:
    Joachim Vandekerckhove

Joachim Vandekerckhove的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joachim Vandekerckhove', 18)}}的其他基金

Critical tests of neurocognitive relationships
神经认知关系的关键测试
  • 批准号:
    1850849
  • 财政年份:
    2019
  • 资助金额:
    $ 34.96万
  • 项目类别:
    Standard Grant
RR: Workshop on Robust Social and Behavioral Sciences
RR:稳健的社会和行为科学研讨会
  • 批准号:
    1754205
  • 财政年份:
    2018
  • 资助金额:
    $ 34.96万
  • 项目类别:
    Standard Grant
Estimation of Unidentified Cognitive Models with Physiological Data
用生理数据估计未知的认知模型
  • 批准号:
    1658303
  • 财政年份:
    2017
  • 资助金额:
    $ 34.96万
  • 项目类别:
    Standard Grant
Conference: Support for the 2015 Annual Meeting of the Society for Mathematical Psychology
会议:支持数学心理学会2015年年会
  • 批准号:
    1534170
  • 财政年份:
    2015
  • 资助金额:
    $ 34.96万
  • 项目类别:
    Standard Grant
Bayesian Methods for Meta-Analysis in the Presence of Publication Bias
存在发表偏倚的贝叶斯荟萃分析方法
  • 批准号:
    1534472
  • 财政年份:
    2015
  • 资助金额:
    $ 34.96万
  • 项目类别:
    Standard Grant
Cognitive Structural Equation Models
认知结构方程模型
  • 批准号:
    1230118
  • 财政年份:
    2012
  • 资助金额:
    $ 34.96万
  • 项目类别:
    Standard Grant

相似海外基金

Confirmatory Efficacy Clinical Trial of Amygdala Neurofeedback for Depression
杏仁核神经反馈治疗抑郁症的疗效临床试验
  • 批准号:
    10633760
  • 财政年份:
    2023
  • 资助金额:
    $ 34.96万
  • 项目类别:
A Confirmatory Efficacy Trial of Engaging a Novel Sleep/Circadian Rhythm Target as Treatment for Depression in Adolescents
采用新型睡眠/昼夜节律目标治疗青少年抑郁症的验证疗效试验
  • 批准号:
    10581357
  • 财政年份:
    2023
  • 资助金额:
    $ 34.96万
  • 项目类别:
Confirmatory Efficacy Trial of a Traditional vs. Gamified Attention Bias Modification for Depression
传统与游戏化注意力偏差修正治疗抑郁症的验证疗效试验
  • 批准号:
    10726299
  • 财政年份:
    2023
  • 资助金额:
    $ 34.96万
  • 项目类别:
Conduct Confirmatory and Specialized In Vitro Testing and Screening of Interventional Agents in Standard Formats
以标准格式对介入药物进行验证性和专门的体外测试和筛选
  • 批准号:
    10925108
  • 财政年份:
    2023
  • 资助金额:
    $ 34.96万
  • 项目类别:
A Confirmatory Efficacy Study of Interoceptive Exposure for Adolescents with Low Weight Eating Disorders
内感受暴露对低体重饮食失调青少年的有效性研究
  • 批准号:
    10571565
  • 财政年份:
    2023
  • 资助金额:
    $ 34.96万
  • 项目类别:
SCH: Screening and confirmatory machine learning for explainable modeling of non-cancer deaths in cancer patients
SCH:筛选和验证机器学习,用于癌症患者非癌症死亡的可解释模型
  • 批准号:
    10596376
  • 财政年份:
    2022
  • 资助金额:
    $ 34.96万
  • 项目类别:
SCH: Screening and confirmatory machine learning for explainable modeling of non-cancer deaths in cancer patients
SCH:筛选和验证机器学习,用于癌症患者非癌症死亡的可解释模型
  • 批准号:
    10689198
  • 财政年份:
    2022
  • 资助金额:
    $ 34.96万
  • 项目类别:
Efficacy of self-management personal health record for diabetes care integrated by internet of things and smart speaker: confirmatory study
物联网和智能音箱整合自我管理个人健康记录对糖尿病护理的功效:验证性研究
  • 批准号:
    21K11623
  • 财政年份:
    2021
  • 资助金额:
    $ 34.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Rapid Diagnostic Test for confirmatory and stratified diagnosis of neurodegenerative disease using Sebum Biomarkers.
使用皮脂生物标志物开发快速诊断测试,用于神经退行性疾病的确认和分层诊断。
  • 批准号:
    2630471
  • 财政年份:
    2021
  • 资助金额:
    $ 34.96万
  • 项目类别:
    Studentship
In Vitro Confirmatory Testing and Screening of Interventional Agents in Standard Formats: Identification of Anti-HIV Therapeutics and Topical Microbicides
标准格式介入药物的体外验证性测试和筛选:抗 HIV 治疗药物和外用杀菌剂的鉴定
  • 批准号:
    10244630
  • 财政年份:
    2020
  • 资助金额:
    $ 34.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了