RR: Workshop on Robust Social and Behavioral Sciences
RR:稳健的社会和行为科学研讨会
基本信息
- 批准号:1754205
- 负责人:
- 金额:$ 6.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-03-01 至 2019-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Psychological scientists have an impressive arsenal of research methodologies at their disposal. Many of the currently popular methods are tried and tested and have been in use for 100 years or more. Recently, however, exciting new methods have been developed that make use of modern computing technologies, advances in statistics, and big data. Because these modern methods often allow researchers to process large amounts of data at once and ask very detailed questions, they often give results that are robust (reliable and replicable). In order to bring these robust research methods to the forefront of psychological and social science, a "Workshop on Robust Social and Behavioral Sciences" will be held, which will be attended by some of the world's foremost experts in this area. The most important "robust" methods are (1) multifaceted randomized designs that enhance generalizability to a wider set of conditions, (2) robust statistics that are less sensitive to common violations of assumptions (including, notably, the assumption of random sample selection), (3) alternatives to classical hypothesis testing such as parameter estimation, process modeling, model selection, and Bayesian inference, and (4) collection of intensive data such as data generated by social media, data collected via Amazon Mechanical Turk, or data output by "many-labs" research consortia. During the Workshop, attendees will discuss the pros and cons of these research methods that are adapted to the demands and affordances of our field in the present day. An interdisciplinary panel led by an expert in cultural and behavioral change will evaluate the applicability of these methods to different subfields, identify discipline-specific challenges, and prepare a "road map" document outlining current such challenges for methodologists to address. Attendees will also produce video lectures on the topic of robust methods, and these lectures will be informed by comments from the interdisciplinary panel. All products of the Workshop will be made public.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
心理学家拥有令人印象深刻的研究方法库。许多目前流行的方法都是经过尝试和测试的,并且已经使用了100年或更长时间。然而,最近,利用现代计算技术、统计学的进步和大数据,开发出了令人兴奋的新方法。由于这些现代方法通常允许研究人员一次处理大量数据并提出非常详细的问题,因此它们通常会给出稳健(可靠且可复制)的结果。为了将这些强大的研究方法带到心理和社会科学的前沿,将举办一个“强大的社会和行为科学研讨会”,该研讨会将由该领域的一些世界上最重要的专家参加。最重要的“稳健”方法是(1)多面随机设计,增强对更广泛条件的可泛化性;(2)稳健统计,对常见的违反假设(特别是随机样本选择假设)不太敏感;(3)经典假设检验的替代方案,如参数估计、过程建模、模型选择和贝叶斯推理;(4)收集密集数据,如社交媒体生成的数据。通过亚马逊土耳其机器人收集的数据,或者“多实验室”研究联盟输出的数据。在研讨会期间,与会者将讨论这些研究方法的优缺点,以适应当今我们领域的需求和能力。一个由文化和行为改变专家领导的跨学科小组将评估这些方法在不同子领域的适用性,确定学科特有的挑战,并准备一份“路线图”文件,概述当前这些挑战,供方法学家解决。与会者还将制作关于稳健方法主题的视频讲座,这些讲座将由跨学科小组的评论告知。工作坊的所有产品都将对外公开。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joachim Vandekerckhove其他文献
Deep latent variable joint cognitive modeling of neural signals and human behavior
- DOI:
10.1016/j.neuroimage.2024.120559 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:
- 作者:
Khuong Vo;Qinhua Jenny Sun;Michael D. Nunez;Joachim Vandekerckhove;Ramesh Srinivasan - 通讯作者:
Ramesh Srinivasan
Bayesian Graphical Modeling with the Circular Drift Diffusion Model
使用圆形漂移扩散模型的贝叶斯图形建模
- DOI:
10.1007/s42113-023-00191-4 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Manuel Villarreal;Adriana F Chávez de la Peña;Percy Mistry;Vinod Menon;Joachim Vandekerckhove;Michael D. Lee - 通讯作者:
Michael D. Lee
An EZ Bayesian hierarchical drift diffusion model for response time and accuracy
- DOI:
10.3758/s13423-025-02729-y - 发表时间:
2025-07-25 - 期刊:
- 影响因子:3.000
- 作者:
Adriana F. Chávez De la Peña;Joachim Vandekerckhove - 通讯作者:
Joachim Vandekerckhove
Where’s Waldo, Ohio? Using Cognitive Models to Improve the Aggregation of Spatial Knowledge
俄亥俄州沃尔多在哪里?使用认知模型来改善空间知识的聚合
- DOI:
10.1007/s42113-024-00200-0 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Lauren E. Montgomery;Charles M. Baldini;Joachim Vandekerckhove;Michael D. Lee - 通讯作者:
Michael D. Lee
A Bayesian approach to mitigation of publication bias
- DOI:
10.3758/s13423-015-0868-6 - 发表时间:
2015-07-01 - 期刊:
- 影响因子:3.000
- 作者:
Maime Guan;Joachim Vandekerckhove - 通讯作者:
Joachim Vandekerckhove
Joachim Vandekerckhove的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joachim Vandekerckhove', 18)}}的其他基金
Exploratory and Confirmatory Neurocognitive Modeling with Latent Variables
具有潜在变量的探索性和验证性神经认知模型
- 批准号:
2051186 - 财政年份:2021
- 资助金额:
$ 6.24万 - 项目类别:
Standard Grant
Critical tests of neurocognitive relationships
神经认知关系的关键测试
- 批准号:
1850849 - 财政年份:2019
- 资助金额:
$ 6.24万 - 项目类别:
Standard Grant
Estimation of Unidentified Cognitive Models with Physiological Data
用生理数据估计未知的认知模型
- 批准号:
1658303 - 财政年份:2017
- 资助金额:
$ 6.24万 - 项目类别:
Standard Grant
Conference: Support for the 2015 Annual Meeting of the Society for Mathematical Psychology
会议:支持数学心理学会2015年年会
- 批准号:
1534170 - 财政年份:2015
- 资助金额:
$ 6.24万 - 项目类别:
Standard Grant
Bayesian Methods for Meta-Analysis in the Presence of Publication Bias
存在发表偏倚的贝叶斯荟萃分析方法
- 批准号:
1534472 - 财政年份:2015
- 资助金额:
$ 6.24万 - 项目类别:
Standard Grant
相似海外基金
Workshop: Best Practices for using Next Generation Sequencing (NGS) Datasets to determine Robust Evidence of Positive Selection and Convergent Evolution of Polar Organisms.
研讨会:使用下一代测序 (NGS) 数据集确定极地生物正向选择和趋同进化的有力证据的最佳实践。
- 批准号:
1744877 - 财政年份:2017
- 资助金额:
$ 6.24万 - 项目类别:
Standard Grant
Collaborative Research: Robust and Reliable Research Workshop Proposal: Rethinking Comparison in the Social Sciences
合作研究:稳健可靠的研究研讨会提案:重新思考社会科学中的比较
- 批准号:
1713769 - 财政年份:2017
- 资助金额:
$ 6.24万 - 项目类别:
Standard Grant
RR: Workshop on Promoting Robust and Reliable Research Practice in Science of Organizations
RR:促进组织科学稳健可靠的研究实践研讨会
- 批准号:
1743044 - 财政年份:2017
- 资助金额:
$ 6.24万 - 项目类别:
Standard Grant
Collaborative Research: Robust and Reliable Research Workshop Proposal: Rethinking Comparison in the Social Sciences
合作研究:稳健可靠的研究研讨会提案:重新思考社会科学中的比较
- 批准号:
1713766 - 财政年份:2017
- 资助金额:
$ 6.24万 - 项目类别:
Standard Grant
Workshop: Enhancing robust and generalizable experimental behavioral science
研讨会:增强稳健且可推广的实验行为科学
- 批准号:
1623555 - 财政年份:2016
- 资助金额:
$ 6.24万 - 项目类别:
Standard Grant
Workshop: Developing collection management tools to create more robust and reliable linguistic data
研讨会:开发馆藏管理工具以创建更强大、更可靠的语言数据
- 批准号:
1648984 - 财政年份:2016
- 资助金额:
$ 6.24万 - 项目类别:
Standard Grant
Workshop: Robust Research in the Social, Behavioral, and Economic Sciences, February, 2014, Arlington, VA
研讨会:社会、行为和经济科学的稳健研究,2014 年 2 月,弗吉尼亚州阿灵顿
- 批准号:
1353248 - 财政年份:2013
- 资助金额:
$ 6.24万 - 项目类别:
Standard Grant
Workshop on Robust Socio-technical Architectures in Support of Displaced Persons
支持流离失所者的稳健社会技术架构研讨会
- 批准号:
1343520 - 财政年份:2013
- 资助金额:
$ 6.24万 - 项目类别:
Standard Grant
Workshop on Modeling Sustainable, Resilient, and Robust Infrastructure Systems
可持续、有弹性和稳健的基础设施系统建模研讨会
- 批准号:
1145853 - 财政年份:2011
- 资助金额:
$ 6.24万 - 项目类别:
Standard Grant
Scientific Community On-Site Assessment Workshop for Robust Intelligence
科学界鲁棒智能现场评估研讨会
- 批准号:
0839056 - 财政年份:2008
- 资助金额:
$ 6.24万 - 项目类别:
Standard Grant