AitF: Full: Collaborative Research: Graph-theoretic algorithms to improve phylogenomic analyses
AitF:完整:协作研究:改进系统发育分析的图论算法
基本信息
- 批准号:1535977
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding the history of life on earth ? how species evolved from their common ancestor ? is a major goal of biological research. These evolutionary trees are very hard to construct with high accuracy, because nearly all of the most accurate approaches require the solution to computationally hard optimization problems. Furthermore, research has shown that the evolutionary tree for a single gene can be different from the evolutionary tree for the species, and current methods do not provide adequate accuracy on genome-scale data. As a result, large evolutionary trees, covering big portions of ?The Tree of Life?, are very difficult to compute with high accuracy. This project will develop methods that can enable highly accurate species tree estimation. The key approach is the development of novel divide-and-conquer strategies, whereby a dataset is divided into overlapping subsets, species trees are constructed on the subsets, and then the subset species trees are merged together into a tree on the full dataset. These approaches will be combined with powerful statistical estimation methods, to potentially transform the capability of evolutionary biologists to analyze their data. This project will also provide open source software for the new methods that are developed, and provide training in the use of the software to biologists at national meetings. The project will also contribute to interdisciplinary training for two doctoral students, one at Illinois and one at Berkeley, and course materials for computational biology will be made available online. Understanding evolution, and how it has operated on species and on genes, is a major part of biological data analysis. Statistical estimation approaches often provide the best accuracy, but cannot scale to dataset sizes that are required for modern biology. In addition, species tree estimation is challenged by the heterogeneity of evolutionary trees across the genome, and no current methods are able to provide highly accurate species trees for genome-scale data. These challenges make it essential that new methods be developed in order to make highly accurate large-scale evolutionary tree estimation possible under these complex evolutionary scenarios. This project will develop novel algorithmic strategies to address three key problems: supertree estimation, species tree estimation in the presence of gene tree heterogeneity, and scaling statistical methods to large datasets. In addition to developing graph-theoretic algorithms, the project team will establish mathematical guarantees for these methods using chordal graph theory and probabilistic analysis, under stochastic models of gene and sequence evolution.
了解地球上生命的历史?物种是如何从共同的祖先进化而来的?是生物学研究的一个主要目标。这些进化树很难以高精度构建,因为几乎所有最精确的方法都需要解决计算困难的优化问题。此外,研究表明,单个基因的进化树可能与物种的进化树不同,目前的方法不能提供足够的基因组尺度数据的准确性。因此,巨大的进化树,覆盖了地球的大部分地区。生命之树?,很难进行高精度的计算。该项目将开发能够实现高度精确的物种树估计的方法。关键方法是开发新的分而治之策略,即将数据集划分为重叠的子集,在子集上构建物种树,然后将子集物种树合并为完整数据集上的树。这些方法将与强大的统计估计方法相结合,以潜在地改变进化生物学家分析数据的能力。该项目还将为开发的新方法提供开源软件,并在国家会议上为生物学家提供使用软件的培训。该项目还将为两名博士生提供跨学科培训,一名在伊利诺伊州,一名在伯克利,计算生物学的课程材料将在网上提供。了解进化,以及它是如何作用于物种和基因的,是生物数据分析的主要部分。统计估计方法通常提供最好的准确性,但不能扩展到现代生物学所需的数据集大小。此外,物种树的估计受到整个基因组进化树异质性的挑战,目前没有方法能够为基因组尺度数据提供高度精确的物种树。这些挑战使得开发新的方法变得至关重要,以便在这些复杂的进化场景下进行高精度的大规模进化树估计。该项目将开发新的算法策略来解决三个关键问题:超树估计,存在基因树异质性的物种树估计,以及将统计方法扩展到大型数据集。除了开发图论算法外,项目团队还将在基因和序列进化的随机模型下,利用弦图理论和概率分析为这些方法建立数学保证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tandy Warnow其他文献
EC-SBM synthetic network generator
- DOI:
10.1007/s41109-025-00701-2 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:1.500
- 作者:
The-Anh Vu-Le;Lahari Anne;George Chacko;Tandy Warnow - 通讯作者:
Tandy Warnow
A perspective on 16S rRNA operational taxonomic unit clustering using sequence similarity
关于使用序列相似性进行 16S rRNA 操作分类单元聚类的观点
- DOI:
10.1038/npjbiofilms.2016.4 - 发表时间:
2016-04-20 - 期刊:
- 影响因子:9.200
- 作者:
Nam-Phuong Nguyen;Tandy Warnow;Mihai Pop;Bryan White - 通讯作者:
Bryan White
Correction to: The performance of coalescent-based species tree estimation methods under models of missing data
- DOI:
10.1186/s12864-020-6540-1 - 发表时间:
2020-02-10 - 期刊:
- 影响因子:3.700
- 作者:
Michael Nute;Jed Chou;Erin K. Molloy;Tandy Warnow - 通讯作者:
Tandy Warnow
Analyzing the Order of Items in Manuscripts of The Canterbury Tales
- DOI:
10.1023/a:1021818600001 - 发表时间:
2003-02-01 - 期刊:
- 影响因子:1.800
- 作者:
Matthew Spencer;Barbara Bordalejo;Li-San Wang;Adrian C. Barbrook;Linne R. Mooney;Peter Robinson;Tandy Warnow;Christopher J. Howe - 通讯作者:
Christopher J. Howe
An experimental study of Quartets MaxCut and other supertree methods
- DOI:
10.1186/1748-7188-6-7 - 发表时间:
2011-04-19 - 期刊:
- 影响因子:1.700
- 作者:
M Shel Swenson;Rahul Suri;C Randal Linder;Tandy Warnow - 通讯作者:
Tandy Warnow
Tandy Warnow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tandy Warnow', 18)}}的其他基金
IIBR Informatics: Advancing Bioinformatics Methods using Ensembles of Profile Hidden Markov Models
IIBR 信息学:使用轮廓隐马尔可夫模型集成推进生物信息学方法
- 批准号:
2006069 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
ABI Innovation: New methods for multiple sequence alignment with improved accuracy and scalability
ABI Innovation:多序列比对的新方法,具有更高的准确性和可扩展性
- 批准号:
1458652 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
III: AF: Medium: Collaborative Research: Scalable and Highly Accurate Methods for Metagenomics
III:AF:中:协作研究:可扩展且高度准确的宏基因组学方法
- 批准号:
1513629 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Collaborative Research: Novel Methodologies for Genome-scale Evolutionary Analysis of Multi-locus data
合作研究:多位点数据基因组规模进化分析的新方法
- 批准号:
1461364 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: Novel Methodologies for Genome-scale Evolutionary Analysis of Multi-locus data
合作研究:多位点数据基因组规模进化分析的新方法
- 批准号:
1062335 - 财政年份:2011
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: Large-scale simultaneous multiple alignment and phylogeny estimation
合作研究:大规模同时多重比对和系统发育估计
- 批准号:
0733029 - 财政年份:2007
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Information Technology Research (ITR): Building the Tree of Life -- A National Resource for Phyloinformatics and Computational Phylogenetics
信息技术研究(ITR):构建生命之树——系统信息学和计算系统发育学的国家资源
- 批准号:
0715370 - 财政年份:2006
- 资助金额:
$ 36万 - 项目类别:
Cooperative Agreement
Information Technology Research (ITR): Building the Tree of Life -- A National Resource for Phyloinformatics and Computational Phylogenetics
信息技术研究(ITR):构建生命之树——系统信息学和计算系统发育学的国家资源
- 批准号:
0331654 - 财政年份:2003
- 资助金额:
$ 36万 - 项目类别:
Cooperative Agreement
Information Technology Research (ITR): Building the Tree of Life -- A National Resource for Phyloinformatics and Computational Phylogenetics
信息技术研究(ITR):构建生命之树——系统信息学和计算系统发育学的国家资源
- 批准号:
0331453 - 财政年份:2003
- 资助金额:
$ 36万 - 项目类别:
Cooperative Agreement
ITR: Collaborative Research, Algorithms for Inferring Reticulate Evolution in Historical Linguistics
ITR:历史语言学中推断网状进化的协作研究和算法
- 批准号:
0312830 - 财政年份:2003
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
钴基Full-Heusler合金的掺杂效应和薄膜噪声特性研究
- 批准号:51871067
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
- 批准号:
1723379 - 财政年份:2016
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: Better Hashing for Applications: From Nuts & Bolts to Asymptotics
AitF:完整:协作研究:更好的应用程序哈希:来自坚果
- 批准号:
1535795 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
- 批准号:
1536003 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
AitF: Full: Collaborative Research: Modeling and Understanding Complex Influence in Social Networks
AitF:完整:协作研究:建模和理解社交网络中的复杂影响
- 批准号:
1535912 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: Optimizing Networked Systems with Limited Information
AitF:完整:协作研究:利用有限信息优化网络系统
- 批准号:
1535972 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
AitF: Full: Collaborative Research: Graph-theoretic algorithms to improve phylogenomic analyses
AitF:完整:协作研究:改进系统发育分析的图论算法
- 批准号:
1535989 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
- 批准号:
1535797 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: Compact Data Structures for Traffic Measurement in Software-Defined Networks
AitF:完整:协作研究:软件定义网络中流量测量的紧凑数据结构
- 批准号:
1535878 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: Modeling and Understanding Complex Influence in Social Networks
AitF:完整:协作研究:建模和理解社交网络中的复杂影响
- 批准号:
1535900 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: Practical Foundations for Software-Defined Network Optimization
AitF:完整:协作研究:软件定义网络优化的实践基础
- 批准号:
1535917 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant