AitF: FULL: Collaborative Research: Modeling and Understanding Complex Influence in Social Networks
AitF:完整:协作研究:建模和理解社交网络中的复杂影响
基本信息
- 批准号:1535900
- 负责人:
- 金额:$ 35.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Information, beliefs, diseases, technologies, and behaviors propagate through social interactions as a contagion. Understanding of how these contagions spread is crucial in encouraging beneficial and healthy behaviors and discouraging the ones that are destructive and damaging. Rigorous, mathematical understanding of complex social contagions is not just an abstraction, but will guide applications from healthcare to word-of-mouth advertising. The technical content of this project is inherently interdisciplinary, and its lessons will apply to related fields such as probability, economics, sociology, and statistical physics. The research efforts are integrated with the educational and outreach activities of the PIs, who have strong records of broadly disseminating cutting-edge research to high school, undergraduate, and graduate students through teaching, outreach programs, and personal mentoring. This project will transform our understanding of social contagions by: 1) Developing a suite of technical tools to enable improved understanding of specific complex processes; 2) Determining how various parameters of cascade and social structure together impact the chances of a cascade's success or failure; and 3) Obtaining empirical evidence to both corroborate the theoretical findings, and uncover the space of realistic setting for certain parameters. Many existing models of contagion assume that increasing the number of infected (or affected) neighbors marginally decreases the chance of infection. Many contagions, such as adoption of expensive new technology, fail to have this property, but instead have more complex rules for infection. This leads to different spreading behaviors even on the same networks. Motivated by sociology research findings, this project will greatly enhance our understanding of social contagions in three aspects. First this project will provide rigorous study of the spreading behavior of a simplified theoretical model called k-complex contagions and its interactions with structures in the underlying graph such as tie strength, unusually influential nodes, and community structures. Second, this project presents a general model for studying cascades that is both theoretically tractable and practically motivated. The general model generalizes most previous theoretical models of complex and simple contagions and includes homophily and environmental factors on cascades. Finally, this project will use post-hoc analysis as well as real world social experiments to verify the veracity of the model and fit the parameters in different settings.
信息、信仰、疾病、技术和行为以传染病的形式通过社会互动传播。了解这些传染是如何传播的,对于鼓励有益和健康的行为,阻止破坏性和破坏性的行为至关重要。对复杂的社会传染进行严格的数学理解不仅仅是一种抽象,而且将指导从医疗保健到口碑广告的应用。本项目的技术内容本质上是跨学科的,其经验教训将适用于相关领域,如概率论、经济学、社会学和统计物理学。研究工作与pi的教育和推广活动相结合,pi在通过教学、推广项目和个人指导向高中、本科生和研究生广泛传播前沿研究方面有着良好的记录。该项目将通过以下方式改变我们对社会传染的理解:1)开发一套技术工具,以提高对特定复杂过程的理解;2)确定级联的各种参数和社会结构如何共同影响级联成功或失败的机会;3)获得经验证据,既可以证实理论发现,又可以揭示某些参数的现实设置空间。许多现有的传染模型假设,增加受感染(或受影响)邻居的数量,会略微降低感染的机会。许多传染病,例如采用昂贵的新技术,没有这种特性,而是有更复杂的感染规则。这就导致了即使在相同的网络中,传播行为也是不同的。在社会学研究成果的推动下,本项目将从三个方面大大增强我们对社会传染的理解。首先,该项目将对一个被称为k-复传染的简化理论模型的传播行为及其与基础图中的结构(如纽带强度、异常影响节点和社区结构)的相互作用进行严格研究。其次,该项目提出了一个研究级联的一般模型,该模型在理论上易于处理,并且具有实践动机。一般模型概括了大多数先前的复杂和简单传染的理论模型,并包括级联上的同质性和环境因素。最后,本项目将使用事后分析以及现实世界的社会实验来验证模型的准确性,并在不同的设置中拟合参数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jie Gao其他文献
Few-shot learning for short text classification
短文本分类的少样本学习
- DOI:
10.1007/s11042-018-5772-4 - 发表时间:
2018 - 期刊:
- 影响因子:3.6
- 作者:
Leiming Yan;Yuhui Zheng;Jie Gao - 通讯作者:
Jie Gao
Mucin2 is Required for Probiotic Agents-Mediated Blocking Effects on Meningitic E. coli-Induced Pathogenicities.
Mucin2 是益生菌介导的对脑膜炎大肠杆菌诱导的致病性的阻断作用所必需的。
- DOI:
10.4014/jmb.1502.02010 - 发表时间:
2015-10 - 期刊:
- 影响因子:0
- 作者:
Jingyi Yu;Xiaolong He;Puthiyakunnon S;Liang Peng;Yan Li;Li-Sha Wu;Wen Ling Peng;Ya Zhang;Jie Gao;Yao-Yuan Zhang;Swapna Boddu;Ming Long;Hong Cao;Sheng-He Huang - 通讯作者:
Sheng-He Huang
The Existence of Homoclinic Solutions for Second Order Differential Equation
- DOI:
10.4028/www.scientific.net/amm.195-196.728 - 发表时间:
2012-08 - 期刊:
- 影响因子:0
- 作者:
Jie Gao - 通讯作者:
Jie Gao
Study on photodissociation and photoconversion characteristics of CS2 in O2/O3 environment using real-time conversion products obtained by UV-DOAS
利用UV-DOAS获得的实时转换产物研究CS2在O2/O3环境中的光解离和光转换特性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:7.7
- 作者:
Jie Gao;Mu Li;Huan Zhao;Yongqi Wu;Qiang Gao;Xijun Wu;Yucun Zhang;Yungang Zhang - 通讯作者:
Yungang Zhang
Nonylphenol ethoxylates biodegradation increases estrogenicity of textile wastewater in biological treatment systems
壬基酚聚氧乙烯醚生物降解增加生物处理系统中纺织废水的雌激素性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:12.8
- 作者:
Xiwei He;Zhaodong Qi;Jie Gao;Kailong Huang;Mei Li;Dirk Springael;Xu-xiang Zhang - 通讯作者:
Xu-xiang Zhang
Jie Gao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jie Gao', 18)}}的其他基金
CRCNS Research Proposal: Modeling Human Brain Development as a Dynamic Multi-Scale Network Optimization Process
CRCNS 研究提案:将人脑发育建模为动态多尺度网络优化过程
- 批准号:
2207440 - 财政年份:2022
- 资助金额:
$ 35.68万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: Promoting Social Learning Amid Interference in the Age of Social Media
合作研究:AF:小:在社交媒体时代的干扰下促进社交学习
- 批准号:
2208663 - 财政年份:2022
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
Collaborative Research: Infrared Chiral Metasurface Enhanced Vibrational Circular Dichroism Biomolecule Sensing
合作研究:红外手性超表面增强振动圆二色性生物分子传感
- 批准号:
2230069 - 财政年份:2022
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
Collaborative Research: 2D ferroelectric nonlinear metasurface holograms
合作研究:二维铁电非线性超表面全息图
- 批准号:
2226875 - 财政年份:2022
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2118953 - 财政年份:2021
- 资助金额:
$ 35.68万 - 项目类别:
Continuing Grant
CAREER: Flat Singular Optics: Generation and Detection of Optical Vortex Beams with Plasmonic Metasurfaces in Linear and Nonlinear Regimes
职业:平面奇异光学:在线性和非线性体系中使用等离激元超表面生成和检测光学涡旋光束
- 批准号:
2204163 - 财政年份:2021
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
Collaborative Research: From Brains to Society: Neural Underpinnings of Collective Behaviors Via Massive Data and Experiments
合作研究:从大脑到社会:通过大量数据和实验研究集体行为的神经基础
- 批准号:
2126582 - 财政年份:2021
- 资助金额:
$ 35.68万 - 项目类别:
Continuing Grant
Collaborative Research: From Brains to Society: Neural Underpinnings of Collective Behaviors Via Massive Data and Experiments
合作研究:从大脑到社会:通过大量数据和实验研究集体行为的神经基础
- 批准号:
1939459 - 财政年份:2019
- 资助金额:
$ 35.68万 - 项目类别:
Continuing Grant
CAREER: Flat Singular Optics: Generation and Detection of Optical Vortex Beams with Plasmonic Metasurfaces in Linear and Nonlinear Regimes
职业:平面奇异光学:在线性和非线性体系中使用等离激元超表面生成和检测光学涡旋光束
- 批准号:
1653032 - 财政年份:2017
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Theory and Algorithms for Discrete Curvatures on Network Data from Human Mobility and Monitoring
合作研究:ATD:人体移动和监测网络数据离散曲率的理论和算法
- 批准号:
1737812 - 财政年份:2017
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
相似国自然基金
钴基Full-Heusler合金的掺杂效应和薄膜噪声特性研究
- 批准号:51871067
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
- 批准号:
1723379 - 财政年份:2016
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: Better Hashing for Applications: From Nuts & Bolts to Asymptotics
AitF:完整:协作研究:更好的应用程序哈希:来自坚果
- 批准号:
1535795 - 财政年份:2015
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
AitF: Full: Collaborative Research: Graph-theoretic algorithms to improve phylogenomic analyses
AitF:完整:协作研究:改进系统发育分析的图论算法
- 批准号:
1535977 - 财政年份:2015
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
- 批准号:
1536003 - 财政年份:2015
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
AitF: Full: Collaborative Research: Modeling and Understanding Complex Influence in Social Networks
AitF:完整:协作研究:建模和理解社交网络中的复杂影响
- 批准号:
1535912 - 财政年份:2015
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: Optimizing Networked Systems with Limited Information
AitF:完整:协作研究:利用有限信息优化网络系统
- 批准号:
1535972 - 财政年份:2015
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
AitF: Full: Collaborative Research: Graph-theoretic algorithms to improve phylogenomic analyses
AitF:完整:协作研究:改进系统发育分析的图论算法
- 批准号:
1535989 - 财政年份:2015
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
- 批准号:
1535797 - 财政年份:2015
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: Compact Data Structures for Traffic Measurement in Software-Defined Networks
AitF:完整:协作研究:软件定义网络中流量测量的紧凑数据结构
- 批准号:
1535878 - 财政年份:2015
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: Practical Foundations for Software-Defined Network Optimization
AitF:完整:协作研究:软件定义网络优化的实践基础
- 批准号:
1535917 - 财政年份:2015
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant