PIRE: Integrated Computational Materials Engineering for Active Materials and Interfaces in Chemical Fuel Production

PIRE:化学燃料生产中活性材料和界面的集成计算材料工程

基本信息

  • 批准号:
    1545907
  • 负责人:
  • 金额:
    $ 427.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-10-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

A major challenge before renewable energy technologies can be implemented at global scales is to find a way to store the energy produced by intermittent sources such as the wind and the sun. Existing technologies fail to meet the energy storage demand and novel solutions are needed. An attractive technology that can potentially meet the growing demand is solid oxide electrolysis, where electrical energy produced by renewables is converted into chemical energy and stored for later use. Solid oxide electrolysis cells (SOECs) are complex, integrated material systems that use electrical energy as input to catalyze chemical reactions that produce chemical fuels. However, at present SOECs last for only a few hundreds of hours primarily because of degradation and failure at interfaces and in the bulk. In this project, an international partnership, comprising the University of Illinois at Urbana-Champaign, University of California at Berkeley, and Northwestern University in the U.S. and Kyushu University in Japan, has been formed to demonstrate an integrated approach to enabling SOEC technology. This PIRE award uniquely combines the world-class experimental resources and expertise at KU with the complimentary experimental expertise at UCB and NU, and the world-class computational facilities and expertise at Illinois to solve the energy storage grand challenge. This project will have a lasting institutional impact, including long-term synergistic collaborations between U.S. and Japan; extensive research and training for students and early career investigators in cutting-edge interdisciplinary topics in an international collaborative context, and outreach to K-12 teachers, science museums and summer camps. The integrated PIRE project will advance research in a number of disciplinary areas, including materials, physics, chemistry, engineering and computational science, and create a global citizenry to power the future. This project will develop an integrated computational and experimental approach to design efficient, reliable, low temperature, extended lifetime SOECs. The novel aspects of the proposal are: 1) Computational and experimental design of novel proton and oxygen-ion conducting electrolytes. This effort will involve the design and development of proton conducting oxides with sufficient stability, operating temperature of 600?aC or lower, higher energy efficiencies at acceptable current density and high proton conductivity. 2) Computational and experimental design of novel electrodes focusing on chemistry and microstructure. This effort will involve the design and development of high-activity electrodes based on microstructure optimization and materials activity. In addition, a detailed understanding of new electrodes such as the Ruddlesden-Popper structures and ordered perovskites will be developed. 3) Computational models and experimental validation of degradation modes in SOECs. This will involve the development of a comprehensive understanding of degradation modes at electrolyte/electrode interfaces focusing on relationships between temperature and applied potential to cation segregation, bubble formation, delamination and fracture. The computational effort is strongly tied with the experimental effort and all computational predictions will be validated with experiments. Undergraduate, graduate and postdoctoral researchers will be engaged in a rich US-Japan exchange program and their PIRE research and education experience will prepare them for challenging positions in the global workplace. Outreach activities will focus on K-12 engagement, teacher training, disseminating knowledge via science museums, and summer camps.This award is cofunded by the Division of Advanced Cyberinfrastructure, Directorate for Computer and Information Science and Engineering.
在可再生能源技术能够在全球范围内实施之前,一个主要挑战是找到一种方法来储存由风能和太阳能等间歇性能源产生的能源。现有技术无法满足储能需求,需要新的解决方案。固体氧化物电解是一项有吸引力的技术,可以潜在地满足日益增长的需求,其中可再生能源产生的电能转化为化学能并储存起来供以后使用。固体氧化物电解电池(SOECs)是一种复杂的综合材料系统,它使用电能作为输入来催化产生化学燃料的化学反应。然而,目前soec只能持续几百小时,主要原因是界面和整体的退化和故障。在这个项目中,由伊利诺伊大学厄巴纳-香槟分校、加州大学伯克利分校、美国西北大学和日本九州大学组成的国际合作伙伴关系已经形成,以展示实现SOEC技术的综合方法。该奖项独特地将堪萨斯大学的世界级实验资源和专业知识与UCB和NU的免费实验专业知识以及伊利诺伊大学的世界级计算设施和专业知识结合起来,以解决能源存储的巨大挑战。该项目将产生持久的制度影响,包括美国和日本之间的长期协同合作;在国际合作背景下,为学生和早期职业调查员提供前沿跨学科主题的广泛研究和培训,并与K-12教师,科学博物馆和夏令营联系。综合PIRE项目将推进许多学科领域的研究,包括材料、物理、化学、工程和计算科学,并创造一个全球公民来为未来提供动力。该项目将开发一种集成的计算和实验方法来设计高效、可靠、低温、延长寿命的soec。该方案的新颖之处在于:1)新型质子和氧离子导电电解质的计算和实验设计。这项工作将涉及设计和开发质子导电氧化物,具有足够的稳定性,工作温度为600?交流或更低,在可接受的电流密度和高质子电导率下,具有更高的能量效率。2)基于化学和微观结构的新型电极的计算和实验设计。这项工作将涉及基于微观结构优化和材料活性的高活性电极的设计和开发。此外,还将详细了解Ruddlesden-Popper结构和有序钙钛矿等新电极。3) soec退化模式的计算模型与实验验证。这将涉及对电解质/电极界面降解模式的全面理解,重点关注温度和应用电位与阳离子偏析、气泡形成、分层和断裂之间的关系。计算工作与实验工作紧密相连,所有计算预测都将通过实验验证。本科生、研究生和博士后研究人员将参与丰富的美日交流项目,他们的研究和教育经验将为他们在全球工作场所具有挑战性的职位做好准备。外展活动将侧重于K-12的参与、教师培训、通过科学博物馆和夏令营传播知识。该奖项由计算机和信息科学与工程理事会高级网络基础设施部共同资助。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stability conditions and local minima in multicomponent Hartree-Fock and density functional theory
多组分 Hartree-Fock 和密度泛函理论中的稳定性条件和局部最小值
  • DOI:
    10.1063/1.5040353
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang, Yang;Culpitt, Tanner;Tao, Zhen;Hammes-Schiffer, Sharon
  • 通讯作者:
    Hammes-Schiffer, Sharon
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Narayana Aluru其他文献

Combining Physics-Based and Evolution-Based Methods to Design Antibodies Against an Evolving Virus
  • DOI:
    10.1016/j.bpj.2019.11.2669
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Eric Jakobsson;Amir Barati Farimani;Emad Tajkhorshid;Narayana Aluru
  • 通讯作者:
    Narayana Aluru
A Stacked Graphene-Al2O3 Nanopore Architecture for DNA Detection
  • DOI:
    10.1016/j.bpj.2011.11.3959
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Shouvik Banerjee;B. Murali Venkatesan;David Estrada;Xiaozhong Jin;Vincent Dorgan;Vita Solovyeva;Myung-Ho Bae;Narayana Aluru;Eric Pop;Rashid Bashir
  • 通讯作者:
    Rashid Bashir

Narayana Aluru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Narayana Aluru', 18)}}的其他基金

Collaborative Research: U.S.-Ireland R&D Partnership: Full Atomistic Understanding of Solid-Liquid Interfaces via an Integrated Experiment-Theory Approach
合作研究:美国-爱尔兰 R
  • 批准号:
    2137157
  • 财政年份:
    2022
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Standard Grant
Stimuli-Responsive Soft Materials
刺激响应软材料
  • 批准号:
    2140225
  • 财政年份:
    2021
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Standard Grant
Stimuli-Responsive Soft Materials
刺激响应软材料
  • 批准号:
    1921578
  • 财政年份:
    2020
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Standard Grant
Electrically-Tunable Surface Energy and Reactivity of Graphene
石墨烯的电可调表面能和反应性
  • 批准号:
    1708852
  • 财政年份:
    2017
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Standard Grant
Intrinsic and Extrinsic Losses in Nanoelectromechanical Systems
纳米机电系统的内在和外在损耗
  • 批准号:
    1506619
  • 财政年份:
    2015
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Standard Grant
AF: Small: Density Estimation and Uncertainty Propagation in Complex Systems
AF:小:复杂系统中的密度估计和不确定性传播
  • 批准号:
    1420882
  • 财政年份:
    2014
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Standard Grant
Structure, Dynamics and Transport of Multiphase Fluids
多相流体的结构、动力学和输运
  • 批准号:
    1264282
  • 财政年份:
    2013
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Standard Grant
QMHP: Multiscale Analysis of Coupled Electrical, Mechanical Systems at Nanoscale
QMHP:纳米级耦合电气、机械系统的多尺度分析
  • 批准号:
    1127480
  • 财政年份:
    2011
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Continuing Grant
Transport and Interfacial Phenomena in Boron Nitride Nanotubes
氮化硼纳米管中的传输和界面现象
  • 批准号:
    0852657
  • 财政年份:
    2009
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Standard Grant
AF:Small:Coarse-Grained Algorithms for Soft Matter
AF:Small:软物质的粗粒度算法
  • 批准号:
    0915718
  • 财政年份:
    2009
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Standard Grant

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
焦虑症小鼠模型整合模式(Integrated) 行为和精细行为评价体系的构建
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
  • 批准号:
    10097944
  • 财政年份:
    2024
  • 资助金额:
    $ 427.38万
  • 项目类别:
    EU-Funded
Integrated Computational and Mechanistic Investigation on New Reactivity and Selectivity in Emerging Enzymatic Reactions
新兴酶反应中新反应性和选择性的综合计算和机理研究
  • 批准号:
    2400087
  • 财政年份:
    2024
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Standard Grant
Core D: Integrated Computational Analysis Core
核心D:综合计算分析核心
  • 批准号:
    10555896
  • 财政年份:
    2023
  • 资助金额:
    $ 427.38万
  • 项目类别:
Investigating Early Elementary Students' Computational Thinking Development in Integrated Mathematics-Coding Instruction
综合数学编码教学中小学生计算思维发展的调查
  • 批准号:
    2300357
  • 财政年份:
    2023
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Continuing Grant
Integrated Multiscale Computational and Experimental Investigations on Fracture of Additively Manufactured Polymer Composites
增材制造聚合物复合材料断裂的综合多尺度计算和实验研究
  • 批准号:
    2309845
  • 财政年份:
    2023
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO OSE Track 1: Advanced cloud-based Data- and Visualization-Integrated Simulation EnviRonment (ADVISER) to Advance Computational Glaciology
合作研究:GEO OSE Track 1:先进的基于云的数据和可视化集成模拟环境 (ADVISER),以推进计算冰川学
  • 批准号:
    2324737
  • 财政年份:
    2023
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Standard Grant
Metabolic interactions in the vascular wall: an integrated experimental and computational approach
血管壁代谢相互作用:综合实验和计算方法
  • 批准号:
    10660336
  • 财政年份:
    2023
  • 资助金额:
    $ 427.38万
  • 项目类别:
Conference: Participant Support for The 7th World Congress on Integrated Computational Materials Engineering (ICME); Orlando, Florida; 21-25 May 2023
会议:第七届世界集成计算材料工程大会(ICME)与会者支持;
  • 批准号:
    2316628
  • 财政年份:
    2023
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Standard Grant
Integrated experimental and computational approach for accurate patient-specific vascular embolization
用于准确的患者特异性血管栓塞的综合实验和计算方法
  • 批准号:
    10724852
  • 财政年份:
    2023
  • 资助金额:
    $ 427.38万
  • 项目类别:
Novel Plastizymes: discovery and improvement of plastic-degrading enzymes by integrated cycles of computational and experimental approaches
新型塑料酶:通过计算和实验方法的综合循环发现和改进塑料降解酶
  • 批准号:
    BB/X00306X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 427.38万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了