BIGDATA: F: New Algorithms of Online Machine Learning for Big Data

BIGDATA:F:大数据在线机器学习的新算法

基本信息

  • 批准号:
    1545995
  • 负责人:
  • 金额:
    $ 71.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

This project is developing innovative, theoretically rigorous algorithms to learn from continuously arriving (streaming) data. Specific challenges addressed are class imbalance (one of the concepts to be learned is very rare, as in disease detection), cost constraints on both obtaining features (e.g., computationally expensive image processing), and cost constraints on obtaining class labels (e.g., human annotation.) The algorithms developed in this project make it possible to effectively address big data challenges in streaming data due to increased complexities in various aspects such as heavily imbalanced data distributions, ultrahigh dimensional features, a large number of labels, highly complex constraints, etc. The project will also contribute to training future professionals in big data analytics, including participation in the University of Iowa's undergraduate summer research program and high school student training program.Most work devoted to online learning algorithms and their analysis were developed with the goal of minimizing a symmetric measure (e.g., the classification error) and without considering practical constraints arising in big data. This project addresses imbalanced data by developing online learning algorithms for minimizing asymmetric measures including F-score, area under the ROC curve, and area under precision and recall curve. Convex or non-convex surrogate loss functions that well-approximate these asymmetric measures are constructed and minimized in an online fashion. The project also develops online algorithms under three types of constraints arising in big data context namely constraints on computing costs, on query costs, and complex inequality constraints, by exploring techniques in randomized algorithms, active learning and convex optimization. The developed algorithms are being evaluated in real applications including biomedical semantic indexing, social media mining, and image annotation.
该项目正在开发创新的、理论上严格的算法,以从不断到达的(流)数据中学习。 所解决的具体挑战是类别不平衡(要学习的概念之一非常罕见,如在疾病检测中),获得特征的成本约束(例如,计算上昂贵的图像处理),以及获得类别标签的成本约束(例如,人类注释。) 在这个项目中开发的算法可以有效地解决流数据中的大数据挑战,因为各个方面的复杂性增加,例如严重不平衡的数据分布,多维特征,大量标签,高度复杂的约束等。该项目还将有助于培养未来的大数据分析专业人员,包括参与爱荷华州大学的本科生暑期研究计划和高中生培训计划。大多数致力于在线学习算法及其分析的工作都是以最小化对称度量为目标开发的(例如,分类错误),而不考虑大数据中出现的实际约束。 该项目通过开发在线学习算法来解决不平衡数据,以最大限度地减少不对称措施,包括F-score,ROC曲线下面积以及精确度和召回率曲线下面积。 凸或非凸的替代损失函数,以及近似这些不对称的措施,构造和最小化在一个在线的方式。该项目还通过探索随机算法、主动学习和凸优化技术,在大数据环境中产生的三种约束条件下开发在线算法,即计算成本约束、查询成本约束和复杂不等式约束。 所开发的算法正在真实的应用中进行评估,包括生物医学语义索引,社交媒体挖掘和图像注释。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tianbao Yang其他文献

Evolution of the morphological, structural, and molecular properties of gluten protein in dough with different hydration levels during mixing.
  • DOI:
    10.1016/j.fochx.2022.100448
  • 发表时间:
    2022-10-30
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Ruobing Jia;Mengli Zhang;Tianbao Yang;Meng Ma;Qingjie Sun;Man Li
  • 通讯作者:
    Man Li
Improved bounds for the Nystrm method with application to kernel classification
改进 Nystr 的界限
Deep AUC Maximization for Medical Image Classification: Challenges and Opportunities
  • DOI:
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianbao Yang
  • 通讯作者:
    Tianbao Yang
Optimizing microgreen cultivation through post-crosslinked alginate-gellan gum hydrogel substrates with enhanced porosity and structural integrity
通过具有增强孔隙率和结构完整性的后交联海藻酸钠 - 结冷胶复合水凝胶基质优化微型蔬菜种植
  • DOI:
    10.1016/j.ijbiomac.2025.142905
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    8.500
  • 作者:
    Ella Evensen;Zi Teng;Yimin Mao;Po-Yen Chen;Irma Ortiz;Yang Li;Tianbao Yang;Jorge M. Fonseca;Qin Wang;Yaguang Luo
  • 通讯作者:
    Yaguang Luo
A Robust Zero-Sum Game Framework for Pool-based Active Learning
基于池的主动学习的鲁棒零和博弈框架

Tianbao Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tianbao Yang', 18)}}的其他基金

Collaborative Research:SCH:Bimodal Interpretable Multi-Instance Medical-Image Classification
合作研究:SCH:双峰可解释多实例医学图像分类
  • 批准号:
    2306572
  • 财政年份:
    2023
  • 资助金额:
    $ 71.24万
  • 项目类别:
    Standard Grant
FAI: Advancing Optimization for Threshold-Agnostic Fair AI Systems
FAI:推进与阈值无关的公平人工智能系统的优化
  • 批准号:
    2147253
  • 财政年份:
    2022
  • 资助金额:
    $ 71.24万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Robust Deep Learning with Big Imbalanced Data
合作研究:RI:小型:具有大不平衡数据的鲁棒深度学习
  • 批准号:
    2246756
  • 财政年份:
    2022
  • 资助金额:
    $ 71.24万
  • 项目类别:
    Continuing Grant
CAREER: Advancing Constrained and Non-Convex Learning
职业:推进约束和非凸学习
  • 批准号:
    2246753
  • 财政年份:
    2022
  • 资助金额:
    $ 71.24万
  • 项目类别:
    Continuing Grant
FAI: Advancing Optimization for Threshold-Agnostic Fair AI Systems
FAI:推进与阈值无关的公平人工智能系统的优化
  • 批准号:
    2246757
  • 财政年份:
    2022
  • 资助金额:
    $ 71.24万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Robust Deep Learning with Big Imbalanced Data
合作研究:RI:小型:具有大不平衡数据的鲁棒深度学习
  • 批准号:
    2110545
  • 财政年份:
    2021
  • 资助金额:
    $ 71.24万
  • 项目类别:
    Continuing Grant
CAREER: Advancing Constrained and Non-Convex Learning
职业:推进约束和非凸学习
  • 批准号:
    1844403
  • 财政年份:
    2019
  • 资助金额:
    $ 71.24万
  • 项目类别:
    Continuing Grant
Collaborative Research: Online Data Stream Fusion and Deep Learning for Virtual Meter in Smart Power Distribution Systems
合作研究:智能配电系统中虚拟电表的在线数据流融合和深度学习
  • 批准号:
    1933212
  • 财政年份:
    2019
  • 资助金额:
    $ 71.24万
  • 项目类别:
    Standard Grant
CRII: III: Scaling up Distance Metric Learning for Large-scale Ultrahigh-dimensional Data
CRII:III:扩大大规模超高维数据的距离度量学习
  • 批准号:
    1463988
  • 财政年份:
    2015
  • 资助金额:
    $ 71.24万
  • 项目类别:
    Standard Grant

相似海外基金

Theory and algorithms for a new class of computationally amenable nonconvex functions
一类新的可计算非凸函数的理论和算法
  • 批准号:
    2416250
  • 财政年份:
    2024
  • 资助金额:
    $ 71.24万
  • 项目类别:
    Standard Grant
New Algorithms for Cryogenic Electron Microscopy
低温电子显微镜的新算法
  • 批准号:
    10543569
  • 财政年份:
    2023
  • 资助金额:
    $ 71.24万
  • 项目类别:
KidneyAlgo: New Algorithms for UK and International Kidney Exchange
KidneyAlgo:英国和国际肾脏交换的新算法
  • 批准号:
    EP/X01357X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 71.24万
  • 项目类别:
    Research Grant
Theory and algorithms for a new class of computationally amenable nonconvex functions
一类新的可计算非凸函数的理论和算法
  • 批准号:
    2309729
  • 财政年份:
    2023
  • 资助金额:
    $ 71.24万
  • 项目类别:
    Standard Grant
New algorithms for Bayesian Computation
贝叶斯计算的新算法
  • 批准号:
    2310788
  • 财政年份:
    2023
  • 资助金额:
    $ 71.24万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
  • 批准号:
    2311274
  • 财政年份:
    2023
  • 资助金额:
    $ 71.24万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
  • 批准号:
    2311275
  • 财政年份:
    2023
  • 资助金额:
    $ 71.24万
  • 项目类别:
    Standard Grant
KidneyAlgo: New Algorithms for UK and International Kidney Exchange
KidneyAlgo:英国和国际肾脏交换的新算法
  • 批准号:
    EP/X013618/1
  • 财政年份:
    2023
  • 资助金额:
    $ 71.24万
  • 项目类别:
    Research Grant
AF: Small: New Challenges and Approaches in Clustering Algorithms
AF:小:聚类算法的新挑战和方法
  • 批准号:
    2311397
  • 财政年份:
    2023
  • 资助金额:
    $ 71.24万
  • 项目类别:
    Standard Grant
New proximal algorithms for computational imaging: From optimisation theory to enhanced deep learning
计算成像的新近端算法:从优化理论到增强型深度学习
  • 批准号:
    EP/X028860/1
  • 财政年份:
    2023
  • 资助金额:
    $ 71.24万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了