Collaborative Research: Online Data Stream Fusion and Deep Learning for Virtual Meter in Smart Power Distribution Systems
合作研究:智能配电系统中虚拟电表的在线数据流融合和深度学习
基本信息
- 批准号:1933212
- 负责人:
- 金额:$ 10.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With ever growing deployment of information and communication technologies in engineering systems online steaming of data becomes available. Online learning algorithms can utilize such high value data to enhance operation of national critical infrastructures such as power grids. Power distribution systems, unlike transmission power grids, lack extensive direct online measurement through sensing infrastructures. This makes an accurate monitoring of power distribution systems, which is crucial for reliable operation of the system, a challenging task, specifically in power distribution systems with massive integration of intermittent renewable energy sources that increase the variability of the aggregated load-generation values. The proposed research enables reliable monitoring of power distribution systems with massive integration of renewable energy which has economic and social impacts on the public. The proposed online optimization techniques, which will be investigated in this project, can be applied to a variety of learning tasks over data streams beyond power engineering. Research and teaching will be integrated through development of interdisciplinary educational modules on machine learning and smart power grids. The smart grid technologies will be promoted among high school seniors by defining and providing mentorship for projects that intersect power systems and computer science. Talented students from under-represented groups in STEM will be actively engaged in the project through the Washington State University and University of Iowa mentorship engineering programs. Installing new sensors/meters at every node of the power distribution network, which may include thousands of nodes, is an expensive and a multi-year planning task. Also, the required sensors/meters redundancy for achieving reliable sensing platforms in facing possible failure or loss of sensors/meters cannot be fulfilled with such a scarce sensing infrastructure. Our proposed solution to this challenging real-world problem is analytical methodologies in the form of 'Virtual Meter'. The proposed "Virtual Meter" is not an actual physical device; rather it is a co-modeling paradigm that fuses data-driven and physics-based models in a closed loop setting with online bidirectional interactions. We propose a class of coherent, holistic, and feasible stream processing and online learning algorithms with provable quality guarantees and incur learning cost that enables such an online interaction, forging the co-modeling framework. First, we will create a class of ad-hoc data fusion algorithms that can exploit and extract reliable values from heterogeneous data streams. Second, the project will devise a class of online learning algorithms including online deep learning to estimate virtual measurements. The third major contribution of the project is that the proposed 'Virtual Meter' closes the loop of interactions between data-driven and physics-based models in an online setting creating a co-modeling framework to enhance the real-time monitoring of power distribution systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着信息和通信技术在工程系统中的不断发展,数据的在线流变得可用。在线学习算法可以利用这些高价值数据来增强国家关键基础设施(如电网)的运行。 与输电网不同,配电系统缺乏通过传感基础设施进行的广泛的直接在线测量。这使得配电系统的准确监测成为一项具有挑战性的任务,这对于系统的可靠操作至关重要,特别是在具有间歇性可再生能源的大规模集成的配电系统中,间歇性可再生能源增加了聚合负载生成值的可变性。 拟议的研究能够对配电系统进行可靠的监测,并大规模整合可再生能源,对公众产生经济和社会影响。建议的在线优化技术,这将在这个项目中进行调查,可以应用到各种学习任务的数据流超越电力工程。研究和教学将通过开发机器学习和智能电网的跨学科教育模块来整合。智能电网技术将在高中高年级学生中推广,为电力系统和计算机科学交叉的项目定义和提供指导。 来自STEM代表性不足群体的有才华的学生将通过华盛顿州立大学和爱荷华州大学的导师工程项目积极参与该项目。在可能包括数千个节点的配电网络的每个节点处安装新的传感器/仪表是一项昂贵的多年规划任务。 此外,在面对传感器/仪表的可能故障或丢失时,用于实现可靠的感测平台所需的传感器/仪表冗余不能用这种稀缺的感测基础设施来实现。 我们提出的解决这个具有挑战性的现实世界的问题是分析方法的“虚拟仪表”的形式。所提出的“虚拟仪表”不是一个实际的物理设备;相反,它是一个共同建模的范例,融合数据驱动和基于物理的模型在一个闭环设置与在线双向交互。我们提出了一类连贯的,整体的,可行的流处理和在线学习算法,具有可证明的质量保证,并产生学习成本,使这样的在线交互,锻造共同建模框架。首先,我们将创建一类ad-hoc数据融合算法,可以利用和提取可靠的值从异构数据流。其次,该项目将设计一类在线学习算法,包括在线深度学习,以估计虚拟测量。该项目的第三个主要贡献是,拟议的“虚拟电表”在在线设置中关闭了数据驱动和基于物理的模型之间的交互循环,创建了一个共同建模框架,以增强配电系统的实时监控。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks
- DOI:
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Zhishuai Guo;Mingrui Liu;Zhuoning Yuan;Li Shen;Wei Liu;Tianbao Yang
- 通讯作者:Zhishuai Guo;Mingrui Liu;Zhuoning Yuan;Li Shen;Wei Liu;Tianbao Yang
An Online Method for A Class of Distributionally Robust Optimization with Non-convex Objectives
- DOI:
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Qi Qi-Qi;Zhishuai Guo;Yi Xu;Rong Jin;Tianbao Yang
- 通讯作者:Qi Qi-Qi;Zhishuai Guo;Yi Xu;Rong Jin;Tianbao Yang
Stability and Generalization of Stochastic Gradient Methods for Minimax Problems
- DOI:
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Yunwen Lei;Zhenhuan Yang;Tianbao Yang;Yiming Ying
- 通讯作者:Yunwen Lei;Zhenhuan Yang;Tianbao Yang;Yiming Ying
A Decentralized Parallel Algorithm for Training Generative Adversarial Nets
- DOI:
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:Mingrui Liu;Wei Zhang;Youssef Mroueh;Xiaodong Cui;Jarret Ross;Tianbao Yang;Payel Das
- 通讯作者:Mingrui Liu;Wei Zhang;Youssef Mroueh;Xiaodong Cui;Jarret Ross;Tianbao Yang;Payel Das
Optimal Epoch Stochastic Gradient Descent Ascent Methods for Min-Max Optimization
- DOI:
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Yan Yan-Yan;Yi Xu;Qihang Lin;W. Liu;Tianbao Yang
- 通讯作者:Yan Yan-Yan;Yi Xu;Qihang Lin;W. Liu;Tianbao Yang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tianbao Yang其他文献
Evolution of the morphological, structural, and molecular properties of gluten protein in dough with different hydration levels during mixing.
- DOI:
10.1016/j.fochx.2022.100448 - 发表时间:
2022-10-30 - 期刊:
- 影响因子:6.1
- 作者:
Ruobing Jia;Mengli Zhang;Tianbao Yang;Meng Ma;Qingjie Sun;Man Li - 通讯作者:
Man Li
Improved bounds for the Nystrm method with application to kernel classification
改进 Nystr 的界限
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:2.5
- 作者:
Rong Jin;Tianbao Yang;Mehrdad Mahdavi;Yu-Feng Li;Zhi-Hua Zhou - 通讯作者:
Zhi-Hua Zhou
Deep AUC Maximization for Medical Image Classification: Challenges and Opportunities
- DOI:
- 发表时间:
2021-11 - 期刊:
- 影响因子:0
- 作者:
Tianbao Yang - 通讯作者:
Tianbao Yang
Optimizing microgreen cultivation through post-crosslinked alginate-gellan gum hydrogel substrates with enhanced porosity and structural integrity
通过具有增强孔隙率和结构完整性的后交联海藻酸钠 - 结冷胶复合水凝胶基质优化微型蔬菜种植
- DOI:
10.1016/j.ijbiomac.2025.142905 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:8.500
- 作者:
Ella Evensen;Zi Teng;Yimin Mao;Po-Yen Chen;Irma Ortiz;Yang Li;Tianbao Yang;Jorge M. Fonseca;Qin Wang;Yaguang Luo - 通讯作者:
Yaguang Luo
A Robust Zero-Sum Game Framework for Pool-based Active Learning
基于池的主动学习的鲁棒零和博弈框架
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Dixian Zhu;Zhe Li;Xiaoyu Wang;Boqing Gong;Tianbao Yang - 通讯作者:
Tianbao Yang
Tianbao Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tianbao Yang', 18)}}的其他基金
Collaborative Research:SCH:Bimodal Interpretable Multi-Instance Medical-Image Classification
合作研究:SCH:双峰可解释多实例医学图像分类
- 批准号:
2306572 - 财政年份:2023
- 资助金额:
$ 10.94万 - 项目类别:
Standard Grant
FAI: Advancing Optimization for Threshold-Agnostic Fair AI Systems
FAI:推进与阈值无关的公平人工智能系统的优化
- 批准号:
2147253 - 财政年份:2022
- 资助金额:
$ 10.94万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Robust Deep Learning with Big Imbalanced Data
合作研究:RI:小型:具有大不平衡数据的鲁棒深度学习
- 批准号:
2246756 - 财政年份:2022
- 资助金额:
$ 10.94万 - 项目类别:
Continuing Grant
CAREER: Advancing Constrained and Non-Convex Learning
职业:推进约束和非凸学习
- 批准号:
2246753 - 财政年份:2022
- 资助金额:
$ 10.94万 - 项目类别:
Continuing Grant
FAI: Advancing Optimization for Threshold-Agnostic Fair AI Systems
FAI:推进与阈值无关的公平人工智能系统的优化
- 批准号:
2246757 - 财政年份:2022
- 资助金额:
$ 10.94万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Robust Deep Learning with Big Imbalanced Data
合作研究:RI:小型:具有大不平衡数据的鲁棒深度学习
- 批准号:
2110545 - 财政年份:2021
- 资助金额:
$ 10.94万 - 项目类别:
Continuing Grant
CAREER: Advancing Constrained and Non-Convex Learning
职业:推进约束和非凸学习
- 批准号:
1844403 - 财政年份:2019
- 资助金额:
$ 10.94万 - 项目类别:
Continuing Grant
CRII: III: Scaling up Distance Metric Learning for Large-scale Ultrahigh-dimensional Data
CRII:III:扩大大规模超高维数据的距离度量学习
- 批准号:
1463988 - 财政年份:2015
- 资助金额:
$ 10.94万 - 项目类别:
Standard Grant
BIGDATA: F: New Algorithms of Online Machine Learning for Big Data
BIGDATA:F:大数据在线机器学习的新算法
- 批准号:
1545995 - 财政年份:2015
- 资助金额:
$ 10.94万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
- 批准号:
2341858 - 财政年份:2024
- 资助金额:
$ 10.94万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
- 批准号:
2341859 - 财政年份:2024
- 资助金额:
$ 10.94万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312835 - 财政年份:2023
- 资助金额:
$ 10.94万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
- 批准号:
2401007 - 财政年份:2023
- 资助金额:
$ 10.94万 - 项目类别:
Standard Grant
Collaborative Research: Coordinating Offline Resource Allocation Decisions and Real-Time Operational Policies in Online Retail with Performance Guarantees
协作研究:在绩效保证下协调在线零售中的线下资源分配决策和实时运营策略
- 批准号:
2226901 - 财政年份:2023
- 资助金额:
$ 10.94万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Understanding the Impact of Privacy Interventions on the Online Publishing Ecosystem
协作研究:SaTC:核心:媒介:了解隐私干预对在线出版生态系统的影响
- 批准号:
2237329 - 财政年份:2023
- 资助金额:
$ 10.94万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Understanding and Combatting Impersonation Attacks and Data Leakage in Online Advertising
协作研究:SaTC:核心:媒介:理解和打击在线广告中的冒充攻击和数据泄露
- 批准号:
2247516 - 财政年份:2023
- 资助金额:
$ 10.94万 - 项目类别:
Continuing Grant
Collaborative Research: Enhancing Radar Meteorology Instruction with an Open, Flexible, Online Course
合作研究:通过开放、灵活的在线课程加强雷达气象学教学
- 批准号:
2303654 - 财政年份:2023
- 资助金额:
$ 10.94万 - 项目类别:
Standard Grant
Collaborative Research: Using a Self-Guided Online Intervention to Address Student Fear of Negative Evaluation in Active Learning Undergraduate Biology Courses
合作研究:利用自我引导的在线干预来解决学生在主动学习本科生物学课程中对负面评价的恐惧
- 批准号:
2409880 - 财政年份:2023
- 资助金额:
$ 10.94万 - 项目类别:
Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
- 批准号:
2220495 - 财政年份:2023
- 资助金额:
$ 10.94万 - 项目类别:
Standard Grant














{{item.name}}会员




