CAREER: Advancing Constrained and Non-Convex Learning

职业:推进约束和非凸学习

基本信息

  • 批准号:
    2246753
  • 负责人:
  • 金额:
    $ 52.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2024-10-31
  • 项目状态:
    已结题

项目摘要

Machine learning has emerged to be an indispensable tool for addressing many decision-making problems, e.g., autonomous driving. As applications of machine learning algorithms for decision-making broaden and diversify, the requirements on security, fairness, interpretability and generalization have been pushed to higher standards. These emerging issues have brought great challenges to the design of machine learning algorithms in the presence of big and complex data. Traditional machine learning methods by minimizing an unconstrained or simply constrained convex objective have become increasingly unsatisfactory. This project seeks to advance learning with complex objectives and constraints by designing and analyzing efficient and effective optimization algorithms for addressing computational challenges in new machine learning paradigms. The project will enhance the ability to solve large-scale, real-world problems from more diverse and broad applications. Furthermore, the project will strive to communicate the significance of machine learning and optimization and provide excellent research experience to students at different levels.Although both constrained optimization and non-convex optimization have been studied and applied to machine learning in the literature, great challenges and many problems remain unaddressed. The primary focus of this project is to design and analyze a set of efficient optimization algorithms and statistical learning methods for advancing machine learning with complex objectives and constraints at large scale. The technical aims of the project are divided into two thrusts. The first thrust is to (i) develop faster and provable stochastic algorithms for learning with complicated non-convex objectives, and (ii) improve the generalization performance of deep learning by advanced regularization and compression methods through design of efficient optimization algorithms. The second thrust is to (i) design computationally efficient constrained optimization algorithms for learning with complicated and complex constraints, and (ii) investigate their applications in adversarial learning, fair learning, interpretable learning, etc. The optimization tools and techniques developed will enable more advanced regularization and loss minimization methods in machine learning, and should greatly influence other areas, such as operations research, signal processing, data mining, etc.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习已经成为解决许多决策问题的不可或缺的工具,例如,自动驾驶随着机器学习算法在决策中的应用越来越广泛和多样化,对安全性、公平性、可解释性和泛化性的要求也越来越高。这些新出现的问题给在大而复杂的数据中设计机器学习算法带来了巨大的挑战。 传统的机器学习方法通过最小化无约束或简单约束的凸目标变得越来越不令人满意。该项目旨在通过设计和分析高效和有效的优化算法来解决新机器学习范式中的计算挑战,从而推进具有复杂目标和约束的学习。该项目将提高从更多样化和更广泛的应用中解决大规模现实问题的能力。此外,本项目还将努力向不同层次的学生传达机器学习和优化的重要性,并提供优秀的研究经验。虽然在文献中,约束优化和非凸优化都已被研究并应用于机器学习,但仍存在巨大的挑战和许多问题尚未解决。该项目的主要重点是设计和分析一套有效的优化算法和统计学习方法,用于大规模推进具有复杂目标和约束的机器学习。该项目的技术目标分为两个方面。第一个目标是(i)开发更快和可证明的随机算法,用于复杂非凸目标的学习,以及(ii)通过设计高效的优化算法,通过高级正则化和压缩方法来提高深度学习的泛化性能。第二个目标是(i)设计计算效率高的约束优化算法,用于复杂和复杂约束的学习,以及(ii)研究它们在对抗学习,公平学习,可解释学习等方面的应用。开发的优化工具和技术将使机器学习中更先进的正则化和损失最小化方法成为可能,并将极大地影响其他领域,如运筹学,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization
  • DOI:
    10.48550/arxiv.2207.08540
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Jiang;Gang Li;Yibo Wang-;Lijun Zhang;Tianbao Yang
  • 通讯作者:
    Wei Jiang;Gang Li;Yibo Wang-;Lijun Zhang;Tianbao Yang
Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and Personalized Federated Learning
  • DOI:
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bokun Wang;Zhuoning Yuan;Yiming Ying;Tianbao Yang
  • 通讯作者:
    Bokun Wang;Zhuoning Yuan;Yiming Ying;Tianbao Yang
Multi-block Min-max Bilevel Optimization with Applications in Multi-task Deep AUC Maximization
  • DOI:
    10.48550/arxiv.2206.00260
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Quanqi Hu;Yongjian Zhong;Tianbao Yang
  • 通讯作者:
    Quanqi Hu;Yongjian Zhong;Tianbao Yang
Stochastic Methods for AUC Optimization subject to AUC-based Fairness Constraints
  • DOI:
    10.48550/arxiv.2212.12603
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yao Yao-Yao;Qihang Lin;Tianbao Yang
  • 通讯作者:
    Yao Yao-Yao;Qihang Lin;Tianbao Yang
Large-scale Optimization of Partial AUC in a Range of False Positive Rates
  • DOI:
    10.48550/arxiv.2203.01505
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yao Yao-Yao;Qihang Lin;Tianbao Yang
  • 通讯作者:
    Yao Yao-Yao;Qihang Lin;Tianbao Yang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tianbao Yang其他文献

Evolution of the morphological, structural, and molecular properties of gluten protein in dough with different hydration levels during mixing.
  • DOI:
    10.1016/j.fochx.2022.100448
  • 发表时间:
    2022-10-30
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Ruobing Jia;Mengli Zhang;Tianbao Yang;Meng Ma;Qingjie Sun;Man Li
  • 通讯作者:
    Man Li
Improved bounds for the Nystrm method with application to kernel classification
改进 Nystr 的界限
Deep AUC Maximization for Medical Image Classification: Challenges and Opportunities
  • DOI:
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianbao Yang
  • 通讯作者:
    Tianbao Yang
Optimizing microgreen cultivation through post-crosslinked alginate-gellan gum hydrogel substrates with enhanced porosity and structural integrity
通过具有增强孔隙率和结构完整性的后交联海藻酸钠 - 结冷胶复合水凝胶基质优化微型蔬菜种植
  • DOI:
    10.1016/j.ijbiomac.2025.142905
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    8.500
  • 作者:
    Ella Evensen;Zi Teng;Yimin Mao;Po-Yen Chen;Irma Ortiz;Yang Li;Tianbao Yang;Jorge M. Fonseca;Qin Wang;Yaguang Luo
  • 通讯作者:
    Yaguang Luo
A kernel density based approach for large scale image retrieval
一种基于核密度的大规模图像检索方法

Tianbao Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tianbao Yang', 18)}}的其他基金

Collaborative Research:SCH:Bimodal Interpretable Multi-Instance Medical-Image Classification
合作研究:SCH:双峰可解释多实例医学图像分类
  • 批准号:
    2306572
  • 财政年份:
    2023
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Standard Grant
FAI: Advancing Optimization for Threshold-Agnostic Fair AI Systems
FAI:推进与阈值无关的公平人工智能系统的优化
  • 批准号:
    2147253
  • 财政年份:
    2022
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Robust Deep Learning with Big Imbalanced Data
合作研究:RI:小型:具有大不平衡数据的鲁棒深度学习
  • 批准号:
    2246756
  • 财政年份:
    2022
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Continuing Grant
FAI: Advancing Optimization for Threshold-Agnostic Fair AI Systems
FAI:推进与阈值无关的公平人工智能系统的优化
  • 批准号:
    2246757
  • 财政年份:
    2022
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Robust Deep Learning with Big Imbalanced Data
合作研究:RI:小型:具有大不平衡数据的鲁棒深度学习
  • 批准号:
    2110545
  • 财政年份:
    2021
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Continuing Grant
CAREER: Advancing Constrained and Non-Convex Learning
职业:推进约束和非凸学习
  • 批准号:
    1844403
  • 财政年份:
    2019
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Continuing Grant
Collaborative Research: Online Data Stream Fusion and Deep Learning for Virtual Meter in Smart Power Distribution Systems
合作研究:智能配电系统中虚拟电表的在线数据流融合和深度学习
  • 批准号:
    1933212
  • 财政年份:
    2019
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Standard Grant
CRII: III: Scaling up Distance Metric Learning for Large-scale Ultrahigh-dimensional Data
CRII:III:扩大大规模超高维数据的距离度量学习
  • 批准号:
    1463988
  • 财政年份:
    2015
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Standard Grant
BIGDATA: F: New Algorithms of Online Machine Learning for Big Data
BIGDATA:F:大数据在线机器学习的新算法
  • 批准号:
    1545995
  • 财政年份:
    2015
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Standard Grant

相似海外基金

Advancing Governance and Resilience for Climate Adaptation through Cultural Heritage (AGREE)
通过文化遗产促进气候适应的治理和抵御能力(同意)
  • 批准号:
    AH/Z000017/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Research Grant
Advancing Child and Youth-led Climate Change Education with Country
与国家一起推进儿童和青少年主导的气候变化教育
  • 批准号:
    DP240100968
  • 财政年份:
    2024
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Discovery Projects
Governing Sustainable Futures: Advancing the use of Participatory Mechanisms for addressing Place-based Contestations of Sustainable Living
治理可持续未来:推进利用参与机制来解决基于地方的可持续生活竞赛
  • 批准号:
    ES/Z502789/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Research Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Standard Grant
HSI Implementation and Evaluation Project: Green Chemistry: Advancing Equity, Relevance, and Environmental Justice
HSI 实施和评估项目:绿色化学:促进公平、相关性和环境正义
  • 批准号:
    2345355
  • 财政年份:
    2024
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Continuing Grant
AUC-GRANTED: Advancing Transformation of the Research Enterprise through Shared Resource Support Model for Collective Impact and Synergistic Effect.
AUC 授予:通过共享资源支持模型实现集体影响和协同效应,推进研究企业转型。
  • 批准号:
    2341110
  • 财政年份:
    2024
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Cooperative Agreement
ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
  • 批准号:
    2406511
  • 财政年份:
    2024
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Standard Grant
Planning: Advancing Discovery on a Sustainable National Research Enterprise
规划:推进可持续国家研究企业的发现
  • 批准号:
    2412406
  • 财政年份:
    2024
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414607
  • 财政年份:
    2024
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Standard Grant
Photonic-Enabled THz Duplex Metasurface: Advancing Communication and Sensing
光子太赫兹双工超表面:推进通信和传感
  • 批准号:
    24K17324
  • 财政年份:
    2024
  • 资助金额:
    $ 52.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了