BIGDATA: Collaborative Research: IA: Quantifying Plankton Diversity with Taxonomy and Attribute Based Classifiers of Underwater Microscope Images
大数据:合作研究:IA:利用水下显微镜图像的分类和属性分类器量化浮游生物多样性
基本信息
- 批准号:1546351
- 负责人:
- 金额:$ 91.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-10-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Plankton play an essential role in the global ecosystem, forming the base of marine food webs, linking the atmosphere to the deep ocean, and regulating a myriad of ecologically and climatologically important processes. Despite their importance, however, the technology to assess abundances and distributions of plankton has been limited. Changes in abundances of individual species are particularly poorly resolved; this includes the harmful algal blooms that have profound economic, societal, and ecosystem effects in many coastal systems. Traditional tools such as nets and bottles can destroy fragile organisms during sampling. Underwater microscopes, on the other hand, allow observation of the organisms undisturbed, and in their natural setting. New underwater microscopes are generating many thousands of high-resolution images of individual plankton each day. Before these images can be used for scientific analyses, the imaged organisms must be identified and classified. However, the vast number of images generated by such microscopes has led to a serious bottleneck: identification and classification of the images takes an impossibly long time for individuals to accomplish. Fortunately, advances in computer vision science have shown great promise in accurately performing such classification tasks. The main goal of this award is to explore and develop computer vision approaches for plankton image classification. A team of instrumentation specialists, an ocean ecologist, and a computer scientist, including two graduate students and one post doctoral student, will formulate, implement, and test methods to advance the goal of efficient and accurate automated plankton image classification. The advances made in this award will enable both improved classification algorithms in computer science, and vast new data streams for plankton ecology.Plankton form the base of marine food webs, link the atmosphere to the deep ocean, and regulate global biogeochemical cycles. Plankton are often studied either through bulk measures, or by manual enumeration of individual taxa. Novel underwater microscope systems such as the Scripps Plankton Camera System (SPCS) are generating tens of thousands of images of individual plankton daily. However, without accurate annotation of the images, the potential science is limited. This project will explore the use of many-layer, deep Convolutional Neural Nets (CNN) as automated computer recognition methods; these techniques hold promise for classifying the nearly one trillion underwater microscope images that have been collected by a variety of research groups around the globe. The primary source of images will be a pair of microscopes that have been operating for 2 years from the Scripps Inst. of Oceanography's pier, yielding 200 million regions of interest. The project will build a large data base of training sets using a novel approach: a bench-top imaging system that is capable of rapidly producing thousands of annotated images showing organisms in all orientations and configurations identical to that in the field. Based on these automatically collected training sets, and hand annotation of in situ images from experts, a deep (many layer) CNN will embed taxonomic and attribute constraints, and will be used to classify the organisms imaged. With success, this massive, growing, taxonomically classified dataset will enable unprecedented, transformative, taxon-specific explorations of the dynamics of the planktonic ecosystem on time scales from hours to decades.
浮游生物在全球生态系统中发挥着至关重要的作用,它们构成了海洋食物网的基础,将大气与深海联系起来,并调节着无数重要的生态和气候过程。然而,尽管它们很重要,评估浮游生物丰度和分布的技术仍然有限。个别物种丰度的变化尤其难以解决;这包括对许多沿海系统产生深远经济、社会和生态系统影响的有害藻华。传统的工具,如网和瓶子,在取样过程中会破坏脆弱的生物。另一方面,水下显微镜可以不受干扰地在自然环境中观察生物。新的水下显微镜每天都能生成数千张单个浮游生物的高分辨率图像。在这些图像用于科学分析之前,必须对成像的生物体进行识别和分类。然而,这种显微镜产生的大量图像导致了一个严重的瓶颈:对图像的识别和分类需要个人花费不可能长的时间来完成。幸运的是,计算机视觉科学的进步在准确执行此类分类任务方面显示出巨大的希望。该奖项的主要目标是探索和开发浮游生物图像分类的计算机视觉方法。一个由仪器专家、海洋生态学家和计算机科学家组成的团队,包括两名研究生和一名博士后,将制定、实施和测试方法,以推进高效、准确的浮游生物图像自动分类的目标。该奖项所取得的进展将使计算机科学的分类算法得到改进,并为浮游生物生态学提供大量新的数据流。浮游生物构成海洋食物网的基础,将大气与深海联系起来,并调节全球生物地球化学循环。浮游生物的研究通常要么通过大量测量,要么通过人工枚举单个分类群。新型水下显微镜系统,如斯克里普斯浮游生物相机系统(SPCS),每天都能生成数以万计的浮游生物个体图像。然而,如果没有准确的图像注释,潜在的科学是有限的。该项目将探索使用多层深度卷积神经网络(CNN)作为自动计算机识别方法;这些技术有望对全球各种研究小组收集的近一万亿张水下显微镜图像进行分类。图像的主要来源将是一对在斯克里普斯海洋研究所的码头上运行了两年的显微镜,它产生了2亿个感兴趣的区域。该项目将使用一种新颖的方法建立一个训练集的大型数据库:一种台式成像系统,能够快速生成数千张带注释的图像,显示与现场相同的所有方向和配置的生物体。基于这些自动收集的训练集,以及专家对原位图像的手工注释,深度(多层)CNN将嵌入分类和属性约束,并将用于对图像中的生物进行分类。如果成功的话,这个庞大的、不断增长的、分类分类的数据集将使人们能够在数小时到数十年的时间尺度上对浮游生态系统的动态进行前所未有的、变革性的、特定分类群的探索。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jules Jaffe其他文献
Jules Jaffe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jules Jaffe', 18)}}的其他基金
EAGER: ATMARS, an AuTonomous underwater vehicle with ancillary optics to measure MARine Snow size, concentration, and descent rate.
EAGER:ATMARS,一种带有辅助光学器件的自主水下航行器,用于测量海洋雪的大小、浓度和下降率。
- 批准号:
2311638 - 财政年份:2023
- 资助金额:
$ 91.61万 - 项目类别:
Standard Grant
Collaborative Research: Development of a Swarm of Autonomous Subsea Vehicles to Infer Plankton Growth and Transport
合作研究:开发一批自主海底车辆来推断浮游生物的生长和运输
- 批准号:
2220258 - 财政年份:2022
- 资助金额:
$ 91.61万 - 项目类别:
Standard Grant
A Benthic Underwater Microscope with Pulse Amplitude Modulated Imaging Capability (BUMP)
具有脉冲幅度调制成像功能 (BUMP) 的底栖水下显微镜
- 批准号:
1736799 - 财政年份:2017
- 资助金额:
$ 91.61万 - 项目类别:
Standard Grant
Sizing Marine Microbes With Scattered Light
用散射光测定海洋微生物的大小
- 批准号:
1029321 - 财政年份:2011
- 资助金额:
$ 91.61万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Networked Sensor Swarm of Underwater Drifters
CPS:中:协作研究:水下漂流者的网络传感器群
- 批准号:
1035518 - 财政年份:2010
- 资助金额:
$ 91.61万 - 项目类别:
Standard Grant
Development and deployment of a swarm of mini-floats for studying coastal physical and biological dynamics
开发和部署用于研究沿海物理和生物动力学的微型浮标群
- 批准号:
0927449 - 财政年份:2009
- 资助金额:
$ 91.61万 - 项目类别:
Standard Grant
Advanced Technology for In-situ Acoustic Sensing of Zooplankton
浮游动物原位声学传感先进技术
- 批准号:
0728305 - 财政年份:2007
- 资助金额:
$ 91.61万 - 项目类别:
Standard Grant
Cyber System:Collaborative Research: Networking of Autonomous Underwater Explorers
网络系统:协作研究:自主水下探险者网络
- 批准号:
0621682 - 财政年份:2006
- 资助金额:
$ 91.61万 - 项目类别:
Standard Grant
Collaborative Research: Development of a Combined in Situ Particle Imaging Velocimeter /Fluorescence Imaging System
合作研究:原位粒子成像测速仪/荧光成像组合系统的开发
- 批准号:
0220379 - 财政年份:2002
- 资助金额:
$ 91.61万 - 项目类别:
Continuing Grant
相似海外基金
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 91.61万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
2308649 - 财政年份:2022
- 资助金额:
$ 91.61万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
- 批准号:
2027516 - 财政年份:2020
- 资助金额:
$ 91.61万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
- 批准号:
1934319 - 财政年份:2019
- 资助金额:
$ 91.61万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
- 批准号:
1838022 - 财政年份:2019
- 资助金额:
$ 91.61万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
- 批准号:
1926250 - 财政年份:2019
- 资助金额:
$ 91.61万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
1947584 - 财政年份:2019
- 资助金额:
$ 91.61万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
1837964 - 财政年份:2019
- 资助金额:
$ 91.61万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
- 批准号:
1838222 - 财政年份:2019
- 资助金额:
$ 91.61万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
- 批准号:
1838248 - 财政年份:2019
- 资助金额:
$ 91.61万 - 项目类别:
Standard Grant