A Benthic Underwater Microscope with Pulse Amplitude Modulated Imaging Capability (BUMP)

具有脉冲幅度调制成像功能 (BUMP) 的底栖水下显微镜

基本信息

项目摘要

The health and long-term dynamics of coastal ecosystems such as kelp forests, mangroves, sea grass beds, and especially coral reefs, are significantly driven by processes that occur on scales of a millimeter or less. Many inhabitants of these ecosystems are primary producers, allowing transformation of sunlight energy into molecular energy, which is what flows through food chains and drives ecosystems climax. The energy transformation takes place in particulate units (from chloroplasts to unicellular algae, depending on the context) and the performance of each of these units is dictated by their direct surrounding physical-chemical conditions. Hence, assessing the performance of each of these units is critical to better understand adaptation and productivity in the ecosystem, while also being a good proxy for the organisms overall health and ability to photosynthesize. These fundamental microscopic processes are of interest to scientists across diverse disciplines such as physiology, photobiology, ecology, and organisms' interactions. Despite the importance of small-scale processes, the availability of tools to study them at the appropriate scales has been severely lacking. As one way of assessing physiological processes, Pulse Amplitude Modulated (PAM) technology is an important method that has been implemented in both the lab and the underwater environment. The resultant data allows inference of photosynthetic rates, providing a measure of photosynthetic activity. Such systems have been implemented for bulk measurements underwater but never at the resolution needed to monitor individual microscopic organisms. In this project, the underwater BUMP microscope (Benthic Underwater Microscope with Pulse amplitude modulated imaging) will be created that will measure these processes at the microscopic level in their natural environment. The system will enhance the capacity to better understand benthic marine processes by enabling in situ measurement of microscopic photosynthetic organisms as well as their physiological status without disturbing or removing them from their natural environment. The results provided by this imaging system will thereby promote new discoveries to better understand factors that structure marine communities globally.To achieve this goal, the BUMP will incorporate a number of features of an existing system for subsea microscopic imaging while, at the same time, adding the capability to observe dynamic fluorescent changes that have been induced with incident modulated light. The system will use a long working distance (45 mm in water) lens with a resolving power of 1.5 micro-meters over a 1.5 mm x 1.5 mm field of view. An inclined ring illuminator consisting of 12 high power broadband LEDs with focusing optics will provide photosystem saturation pulses, actinic light, as well as illumination for reflectance images. The system will provide sufficient illumination for short exposures of 100 microseconds or less. The design includes multiple optical paths allowing for dual-mode imaging with 2 cameras and two illumination sources. Taken together with an IPAD in an underwater housing for controlling the system, a fully functional Pulse Amplitude Modulated imaging system at the microscopic level will be built and tested in both the lab and then moved to the field for diver operation in various environments such as kelp forests and coral reefs.
海岸生态系统的健康和长期动态,例如海带森林,红树林,海草床,尤其是珊瑚礁,这是由在毫米或更少的尺度上发生的过程驱动的。这些生态系统的许多居民都是主要生产者,可以将阳光能量转化为分子能量,这是流经食物链并驱动生态系统高潮的原因。能量转化发生在颗粒单元(从叶绿体到单细胞藻类,具体取决于上下文),每个单元的性能取决于其直接周围的物理化学条件。因此,评估每个单元的性能对于更好地了解生态系统中的适应性和生产力至关重要,同时也是生物体整体健康和光合作用能力的良好代理。这些基本的微观过程对各种学科的科学家(例如生理学,光生物学,生态学和生物的相互作用)感兴趣。尽管小规模的过程很重要,但在适当的尺度上研究它们的可用性仍然严重缺乏。 作为评估生理过程的一种方法,脉冲振幅调制(PAM)技术是在实验室和水下环境中实施的重要方法。 最终的数据允许推断光合速率,从而提供了光合作用的度量。此类系统已被实施用于水下批量测量,但从未以监测各个微观生物所需的分辨率。 在该项目中,将创建水下凸起显微镜(带脉冲幅度调制成像的底栖水下显微镜),该显微镜将在其自然环境中在显微镜水平上测量这些过程。 该系统将通过实现微观光合生物及其生理状态,而无需干扰或将其从自然环境中删除,从而增强了更好地理解底栖海洋过程的能力。该成像系统提供的结果将促进新的发现,以更好地理解在全球范围内构建海洋社区的因素。为了实现此目标,颠簸将结合现有系统的许多特征,用于海底微观成像,同时,增加了观察动态荧光变化的能力,这些变化已被调节光。该系统将在1.5毫米x 1.5毫米的视野上使用较长的工作距离(45 mm的水透镜)镜头,其分辨能力为1.5微米。 由12个高功率宽带LED组成的倾斜环照明器将提供光合系统饱和脉冲,精良光以及反射率图像的照明。 该系统将为100微秒或更少的短曝光提供足够的照明。 该设计包括多个光学路径,允许使用2个摄像机和两个照明源进行双模式成像。 与iPad一起在水下外壳中用于控制该系统,将在实验室中建立和测试在微观级别的功能脉冲振幅调制系统,然后移至现场,以在诸如Kelp Forests和珊瑚礁等各种环境中进行潜水员操作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jules Jaffe其他文献

Jules Jaffe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jules Jaffe', 18)}}的其他基金

EAGER: ATMARS, an AuTonomous underwater vehicle with ancillary optics to measure MARine Snow size, concentration, and descent rate.
EAGER:ATMARS,一种带有辅助光学器件的自主水下航行器,用于测量海洋雪的大小、浓度和下降率。
  • 批准号:
    2311638
  • 财政年份:
    2023
  • 资助金额:
    $ 63.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Development of a Swarm of Autonomous Subsea Vehicles to Infer Plankton Growth and Transport
合作研究:开发一批自主海底车辆来推断浮游生物的生长和运输
  • 批准号:
    2220258
  • 财政年份:
    2022
  • 资助金额:
    $ 63.95万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: IA: Quantifying Plankton Diversity with Taxonomy and Attribute Based Classifiers of Underwater Microscope Images
大数据:合作研究:IA:利用水下显微镜图像的分类和属性分类器量化浮游生物多样性
  • 批准号:
    1546351
  • 财政年份:
    2016
  • 资助金额:
    $ 63.95万
  • 项目类别:
    Standard Grant
Sizing Marine Microbes With Scattered Light
用散射光测定海洋微生物的大小
  • 批准号:
    1029321
  • 财政年份:
    2011
  • 资助金额:
    $ 63.95万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Networked Sensor Swarm of Underwater Drifters
CPS:中:协作研究:水下漂流者的网络传感器群
  • 批准号:
    1035518
  • 财政年份:
    2010
  • 资助金额:
    $ 63.95万
  • 项目类别:
    Standard Grant
Development and deployment of a swarm of mini-floats for studying coastal physical and biological dynamics
开发和部署用于研究沿海物理和生物动力学的微型浮标群
  • 批准号:
    0927449
  • 财政年份:
    2009
  • 资助金额:
    $ 63.95万
  • 项目类别:
    Standard Grant
Advanced Technology for In-situ Acoustic Sensing of Zooplankton
浮游动物原位声学传感先进技术
  • 批准号:
    0728305
  • 财政年份:
    2007
  • 资助金额:
    $ 63.95万
  • 项目类别:
    Standard Grant
Cyber System:Collaborative Research: Networking of Autonomous Underwater Explorers
网络系统:协作研究:自主水下探险者网络
  • 批准号:
    0621682
  • 财政年份:
    2006
  • 资助金额:
    $ 63.95万
  • 项目类别:
    Standard Grant
A Mini Acoustically Tracked Drogue
迷你声学追踪锥套
  • 批准号:
    0227509
  • 财政年份:
    2003
  • 资助金额:
    $ 63.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Development of a Combined in Situ Particle Imaging Velocimeter /Fluorescence Imaging System
合作研究:原位粒子成像测速仪/荧光成像组合系统的开发
  • 批准号:
    0220379
  • 财政年份:
    2002
  • 资助金额:
    $ 63.95万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向线索优化与任务驱动的水下视觉感知增强方法研究
  • 批准号:
    62301105
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向水下崎岖地形辅助探测的仿生蛇机器人流固耦合与自适应控制研究
  • 批准号:
    62303117
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
沉积期水下地貌对海相优质页岩发育的差异控制作用
  • 批准号:
    42372173
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
浅水水域水下机器人声光学信息融合探测与智能识别研究
  • 批准号:
    62363018
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
水下盾构隧道管片结构止水失效机理与长期服役渗漏量预测
  • 批准号:
    52309133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

BIGDATA: Collaborative Research: IA: Quantifying Plankton Diversity with Taxonomy and Attribute Based Classifiers of Underwater Microscope Images
大数据:合作研究:IA:利用水下显微镜图像的分类和属性分类器量化浮游生物多样性
  • 批准号:
    1546305
  • 财政年份:
    2016
  • 资助金额:
    $ 63.95万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: IA: Quantifying Plankton Diversity with Taxonomy and Attribute Based Classifiers of Underwater Microscope Images
大数据:合作研究:IA:利用水下显微镜图像的分类和属性分类器量化浮游生物多样性
  • 批准号:
    1546351
  • 财政年份:
    2016
  • 资助金额:
    $ 63.95万
  • 项目类别:
    Standard Grant
The development of an underwater atomic force microscope for the precise observation of underwater microbes in seawater
开发用于精确观察海水中水下微生物的水下原子力显微镜
  • 批准号:
    26289330
  • 财政年份:
    2014
  • 资助金额:
    $ 63.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Role of astrocytes in cerebral microcirculation -observation with two photon intravital microscope-
星形胶质细胞在脑微循环中的作用-二光子活体显微镜观察-
  • 批准号:
    22591597
  • 财政年份:
    2010
  • 资助金额:
    $ 63.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Measurements of force working on micro particles under surface tension gradient in liquid by using Atomic Force Microscope
原子力显微镜测量液体表面张力梯度作用下微粒子受力
  • 批准号:
    15360405
  • 财政年份:
    2003
  • 资助金额:
    $ 63.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了