BRAIN EAGER: Using Optogenetic Techniques in Combination with Free Flight Perturbations to Elucidate Neural Structure Governing Flight Control in D. Melanogaster
BRAIN EAGER:利用光遗传学技术结合自由飞行扰动来阐明黑腹果蝇控制飞行控制的神经结构
基本信息
- 批准号:1546710
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Forging the link between individual neuron function and the behavior of collections of neurons that can produce complex behaviors is the central goal of contemporary neuroscience. The path towards achieving this goal is being revolutionized by genetic techniques that allow for manipulation of the activity of neurons and measurement of the effect on behavior. Flight behavior in the fruit fly, Drosophila, is highly suitable for this combined analysis, since flies can be genetically manipulated very easily and their rich set of free flight behaviors can be quantitatively characterized in great detail. This project will use this approach to unravel the design and operation of a remarkable neural circuit responsible for giving flies one of the fastest response times in the animal kingdom and controlling their high speed maneuvering capabilities. Using small magnets attached to the flies and applied magnetic fields, flies will be subjected to forces in midair that alter their flight. By turning on and off the neurons in the control circuit that governs their response to such forces and determining the resulting change in their wing motions, the role that each individual neuron plays in the neural circuit that governs the recovery of these insects to the experimental perturbation will be determined. More broadly this work will lay the framework for a general powerful approach for interrogating and building an understanding of many other complex neural circuits. Moreover, the discoveries made will inform design principles for the development of efficient control strategies that can be used in robots. This pipeline for discovery will be publicized through conference meetings, publications, and workshops. In addition, the analysis routines and resulting data will be made available through the Principal Investigator's group web site. The flight of fruit flies (Drosophila) provides a rich set of free flight behaviors that can be quantitatively characterized in great detail using methods recently developed by the PI. Towards this end, this project will develop a platform in which each neuron in this circuit can be manipulated using optogenetics and the altered behavioral response quantified, with the aim of dissecting with unprecedented detail a behaviorally vital yet poorly understood neural circuit. Crucially, the approach taken entails using large empirical data sets of flight kinematics in conjunction with the mathematical theory of dynamical systems to generate reduced order models. These models will be used to guide the experiment design and interpretation of the resulting kinematic data. Application of this approach to motor-neurons will be used to elucidate the role of specific steering muscles in the flight control process. Application of this approach to the inter-neurons, which relay sensory responses to the motor-neurons, is being used to elucidate the design and function of the neural control circuit that determines the fly's response to mid-air perturbations. More broadly the complexity and hierarchical layout of the machinery necessary for insect flight is typical of other complex neural circuits.
建立单个神经元功能和神经元群行为之间的联系是当代神经科学的中心目标,这些神经元群可以产生复杂的行为。实现这一目标的途径正在被基因技术彻底改变,这种技术允许操纵神经元的活动并测量其对行为的影响。果蝇的飞行行为非常适合这种综合分析,因为果蝇可以很容易地进行基因操纵,而且它们丰富的自由飞行行为可以非常详细地定量表征。这个项目将使用这种方法来解开一个非凡的神经回路的设计和运作,这个神经回路负责给苍蝇提供动物王国中最快的反应时间之一,并控制它们的高速机动能力。通过将小磁铁附着在苍蝇身上并施加磁场,苍蝇将在空中受到改变其飞行的力量。通过打开和关闭控制回路中的神经元,控制它们对这些力的反应,并决定它们翅膀运动的最终变化,每个神经元在控制这些昆虫从实验扰动中恢复的神经回路中所起的作用将被确定。更广泛地说,这项工作将为一种通用的强大方法奠定框架,用于询问和建立对许多其他复杂神经回路的理解。此外,这些发现将为开发可用于机器人的有效控制策略提供设计原则。这一发现渠道将通过会议、出版物和研讨会进行宣传。此外,分析程序和结果数据将通过首席研究员小组的网站提供。果蝇(Drosophila)的飞行提供了一套丰富的自由飞行行为,可以使用PI最近开发的方法进行非常详细的定量表征。为此,该项目将开发一个平台,其中该回路中的每个神经元都可以使用光遗传学进行操作,并对改变的行为反应进行量化,目的是以前所未有的细节解剖行为至关重要但知之甚少的神经回路。至关重要的是,所采取的方法需要使用飞行运动学的大型经验数据集,并结合动力系统的数学理论来生成降阶模型。这些模型将用于指导实验设计和由此产生的运动学数据的解释。将这种方法应用于运动神经元将用于阐明特定转向肌肉在飞行控制过程中的作用。将这种方法应用于将感觉反应传递给运动神经元的神经元间,可以用来阐明决定苍蝇对空中扰动反应的神经控制回路的设计和功能。更广泛地说,昆虫飞行所必需的机器的复杂性和分层布局是其他复杂神经回路的典型特征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Itai Cohen其他文献
Extending the Use of Information Theory in Segregation Analyses to Construct Comprehensive Models of Segregation
扩展信息论在分离分析中的应用,构建综合的分离模型
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Boris Barron;Yunus A. Kinkhabwala;Chris Hess;Matthew Hall;Itai Cohen;T. Arias - 通讯作者:
T. Arias
Audio cues enhance mirroring of arm motion when visual cues are scarce
当视觉线索稀缺时,音频线索可以增强手臂运动的镜像
- DOI:
10.1098/rsif.2018.0903 - 发表时间:
2019 - 期刊:
- 影响因子:3.9
- 作者:
Edward D. Lee;Edward Esposito;Itai Cohen - 通讯作者:
Itai Cohen
Micelles in a crystal
晶体中的胶束
- DOI:
10.1038/nmat3156 - 发表时间:
2011-10-24 - 期刊:
- 影响因子:38.500
- 作者:
Lara A. Estroff;Itai Cohen - 通讯作者:
Itai Cohen
Overcoming obstacles to experiments in legal practice
克服法律实践中的实验障碍
- DOI:
10.1126/science.aay3005 - 发表时间:
2020 - 期刊:
- 影响因子:56.9
- 作者:
H. F. Lynch;D. Greiner;Itai Cohen - 通讯作者:
Itai Cohen
Small-area Population Forecast in a Segregated City using Density-Functional Fluctuation Theory
使用密度函数涨落理论对隔离城市的小区域人口进行预测
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yuchao Chen;Yunus A. Kinkhabwala;Boris Barron;Matthew Hall;T. Arias;Itai Cohen - 通讯作者:
Itai Cohen
Itai Cohen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Itai Cohen', 18)}}的其他基金
Emergent Behaviors of Dense Active Suspensions Under Shear
剪切下致密主动悬架的突现行为
- 批准号:
2327094 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Using bidirectional shear protocols to determine microstructural changes responsible for thickening and dethickening in colloidal suspensions
使用双向剪切方案确定导致胶体悬浮液增稠和减稠的微观结构变化
- 批准号:
2010118 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EFRI C3 SoRo: Micron-scale Morphing Soft-Robots for Interfacing With Biological Systems
EFRI C3 SoRo:用于与生物系统连接的微米级变形软机器人
- 批准号:
1935252 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Digital Magnetic Handshake Materials, Structures, and Machines
DMREF:合作研究:数字磁握手材料、结构和机器
- 批准号:
1921567 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Decoding and encoding mechanistic relations between structure and function in crack resistance of articular cartilage and cartilage inspired biomaterials.
合作研究:解码和编码关节软骨和软骨启发生物材料的抗裂结构和功能之间的机械关系。
- 批准号:
1807602 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
New paradigms for relating the microstructure of cartilage to its large scale mechanics: The Roles of Rigidity-Percolation and Double Gel Network Structure in Non-Linear Response
将软骨微观结构与其大规模力学联系起来的新范例:刚性渗透和双凝胶网络结构在非线性响应中的作用
- 批准号:
1536463 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Imaging Local Stress Anisotropy and Determining Its Role in Driving Defect Mobility in Crystals
局部应力各向异性成像并确定其在驱动晶体缺陷迁移率中的作用
- 批准号:
1507607 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
UNS: Imaging inhomogeneous stress networks in colloidal glasses and gels to determine their role in the bulk response of disordered suspensions
UNS:对胶体玻璃和凝胶中的不均匀应力网络进行成像,以确定它们在无序悬浮液的整体响应中的作用
- 批准号:
1509308 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Using confocal rheometry to investigate shear thickening suspensions
使用共焦流变测量法研究剪切增稠悬浮液
- 批准号:
1232666 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Using Colloidal Suspensions to Investigate the Role of Particle Dynamics in Heteroepitaxy and Melting
职业:利用胶体悬浮液研究粒子动力学在异质外延和熔化中的作用
- 批准号:
1056662 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
EAGER: Algorithms for Analyzing Faulty Data Using Domain Information
EAGER:使用域信息分析错误数据的算法
- 批准号:
2414736 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: CET: Advancing Sustainable Cathode Recycling of Spent Lithium-Ion Batteries using Deep Eutectic Solvents
EAGER:CET:使用低共熔溶剂推进废旧锂离子电池的可持续阴极回收
- 批准号:
2343621 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: IMPRESS-U: Modeling and Forecasting of Infection Spread in War and Post War Settings Using Epidemiological, Behavioral and Genomic Surveillance Data
EAGER:IMPRESS-U:使用流行病学、行为和基因组监测数据对战争和战后环境中的感染传播进行建模和预测
- 批准号:
2412914 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Toward Eco-Friendly Oceanography - Using Biodegradable Materials for Drifting Buoys
EAGER:迈向生态友好型海洋学 - 使用可生物降解材料制作漂流浮标
- 批准号:
2415106 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: EAGER--Evaluation of Optimal Mesonetwork Design for Monitoring and Predicting North American Monsoon (NAM) Convection Using Observing System Simulation
合作研究:EAGER——利用观测系统模拟监测和预测北美季风(NAM)对流的最佳中观网络设计评估
- 批准号:
2308410 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Integrating Multi-Omics Biological Networks and Ontologies for lncRNA Function Annotation using Deep Learning
EAGER:使用深度学习集成多组学生物网络和本体以进行 lncRNA 功能注释
- 批准号:
2400785 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Quantum Manufacturing: Scalable Manufacturing of Molecular Qubit Arrays Using Self-assembled DNA
EAGER:量子制造:使用自组装 DNA 进行分子量子位阵列的可扩展制造
- 批准号:
2240309 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: North American Monsoon Prediction Using Causality Informed Machine Learning
EAGER:使用因果关系信息机器学习来预测北美季风
- 批准号:
2313689 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: A Comprehensive Approach for Generating, Sharing, Searching, and Using High-Resolution Terrain Parameters
EAGER:生成、共享、搜索和使用高分辨率地形参数的综合方法
- 批准号:
2334945 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Using Large Language Models to Model Threats to Sensitive Information
EAGER:使用大型语言模型对敏感信息的威胁进行建模
- 批准号:
2331492 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant














{{item.name}}会员




