RTG: Algebraic Topology and Its Applications
RTG:代数拓扑及其应用
基本信息
- 批准号:1547357
- 负责人:
- 金额:$ 172.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recently, algebraic topology has found a number of applications within mathematics and beyond. For example, topology provided powerful new methods for detecting and describing shape and structure in complex and high-dimensional data. This award supports the Research Training Group in Algebraic Topology and its Applications at Ohio State University. This work will be performed in a highly collaborative and active interdisciplinary research environment that has recently emerged, involving investigators from the Departments of Mathematics and Computer Science & Engineering. The main objective of the project is to provide early-stage mathematicians and computer scientists with opportunities to learn about both theoretical and applied aspects of topology and related fields. Exposure to these topics will allow students and junior faculty to move fluently across a range of research topics, to enter research communities in traditional core areas, and to work in new interdisciplinary directions.This award supports postdoctoral researchers, graduate students, and undergraduate researchers studying such topology-related fields as geometric group theory, metric geometry, computational geometry and topology, knot theory, and stochastic topology. The award also supports the development of new courses, as well as working groups, seminars, and workshops in these areas. At the heart of the project is an emphasis on mentoring at all levels. The program also places a strong emphasis on developing writing and communication skills, particularly for postdoctoral researchers and graduate students involved in the research group.
最近,代数拓扑学在数学和其他领域有了许多应用。例如,拓扑学为检测和描述复杂和高维数据中的形状和结构提供了强大的新方法。该奖项支持俄亥俄州州立大学的代数拓扑及其应用研究培训小组。这项工作将在最近出现的高度协作和活跃的跨学科研究环境中进行,涉及数学和计算机科学工程系的研究人员。该项目的主要目标是为早期数学家和计算机科学家提供学习拓扑学和相关领域的理论和应用方面的机会。接触这些主题将使学生和初级教师能够流利地跨越一系列研究主题,进入传统核心领域的研究社区,并在新的跨学科方向工作。该奖项支持博士后研究人员,研究生和本科研究人员研究拓扑学相关领域,如几何群论,度量几何,计算几何和拓扑学,纽结理论,和随机拓扑。该奖项还支持新课程的开发,以及这些领域的工作组,研讨会和讲习班。该项目的核心是强调各级的辅导。该计划还非常重视发展写作和沟通技巧,特别是对于参与研究小组的博士后研究人员和研究生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Kahle其他文献
Topology of random simplicial complexes: a survey
随机单纯复形的拓扑:一项调查
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Matthew Kahle - 通讯作者:
Matthew Kahle
Asymptotic Betti numbers for hard squares in the homological liquid regime
同调液体状态下硬平方的渐近贝蒂数
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
H. Alpert;Matthew Kahle;R. Macpherson - 通讯作者:
R. Macpherson
Homology of configuration spaces of hard squares in a rectangle
矩形中硬正方形配置空间的同调
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
H. Alpert;Ulrich Bauer;Matthew Kahle;R. Macpherson;Kelly Spendlove - 通讯作者:
Kelly Spendlove
The fundamental group of 2-dimensional random cubical complexes
二维随机立方复形的基本群
- DOI:
10.1002/rsa.21036 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Matthew Kahle;Elliot Paquette;'Erika Rold'an - 通讯作者:
'Erika Rold'an
Matthew Kahle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Kahle', 18)}}的其他基金
Algebraic Topology: Methods, Computation, and Science 2022
代数拓扑:方法、计算和科学 2022
- 批准号:
2208855 - 财政年份:2022
- 资助金额:
$ 172.26万 - 项目类别:
Standard Grant
Stochastic Topology and Topological Statistical Mechanics
随机拓扑和拓扑统计力学
- 批准号:
2005630 - 财政年份:2020
- 资助金额:
$ 172.26万 - 项目类别:
Standard Grant
TRIPODS+X:RES: Collaborative Research: Thermodynamic Phases and Configuration Space Topology
TRIPODS X:RES:协作研究:热力学相和构型空间拓扑
- 批准号:
1839358 - 财政年份:2018
- 资助金额:
$ 172.26万 - 项目类别:
Standard Grant
Conference on Topology, Geometry, and Data Analysis at The Ohio State University
俄亥俄州立大学拓扑、几何和数据分析会议
- 批准号:
1613094 - 财政年份:2016
- 资助金额:
$ 172.26万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Groups in Computer Science
AF:小型:协作研究:计算机科学小组
- 批准号:
1017182 - 财政年份:2010
- 资助金额:
$ 172.26万 - 项目类别:
Standard Grant
相似国自然基金
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Algebraic Structures in String Topology
弦拓扑中的代数结构
- 批准号:
2405405 - 财政年份:2024
- 资助金额:
$ 172.26万 - 项目类别:
Standard Grant
Conference: Algebraic Structures in Topology 2024
会议:拓扑中的代数结构 2024
- 批准号:
2348092 - 财政年份:2024
- 资助金额:
$ 172.26万 - 项目类别:
Standard Grant
Applications of algebraic topology to quantum field theory
代数拓扑在量子场论中的应用
- 批准号:
2882485 - 财政年份:2023
- 资助金额:
$ 172.26万 - 项目类别:
Studentship
Collaborative Research: Conference: New England Algebraic Topology and Mathematical Physics Seminar (NEAT MAPS)
合作研究:会议:新英格兰代数拓扑与数学物理研讨会(NEAT MAPS)
- 批准号:
2329854 - 财政年份:2023
- 资助金额:
$ 172.26万 - 项目类别:
Standard Grant
Collaborative Research: Conference: New England Algebraic Topology and Mathematical Physics Seminar (NEAT MAPS)
合作研究:会议:新英格兰代数拓扑与数学物理研讨会(NEAT MAPS)
- 批准号:
2329855 - 财政年份:2023
- 资助金额:
$ 172.26万 - 项目类别:
Standard Grant
RTG: Arithmetic, Combinatorics, and Topology of Algebraic Varieties
RTG:代数簇的算术、组合学和拓扑
- 批准号:
2231565 - 财政年份:2023
- 资助金额:
$ 172.26万 - 项目类别:
Continuing Grant
The Topology and Hodge Theory of Algebraic Maps
代数图的拓扑和霍奇理论
- 批准号:
2200492 - 财政年份:2022
- 资助金额:
$ 172.26万 - 项目类别:
Continuing Grant
Conference on Algebraic Topology and Topological Data Analysis
代数拓扑与拓扑数据分析会议
- 批准号:
2223905 - 财政年份:2022
- 资助金额:
$ 172.26万 - 项目类别:
Standard Grant
Algebraic topology of quantum spin systems
量子自旋系统的代数拓扑
- 批准号:
22K13910 - 财政年份:2022
- 资助金额:
$ 172.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ALGEBRAIC TOPOLOGY FOR THE STUDY OF MANIFOLDS
研究流形的代数拓扑
- 批准号:
2747348 - 财政年份:2022
- 资助金额:
$ 172.26万 - 项目类别:
Studentship