Stochastic Topology and Topological Statistical Mechanics
随机拓扑和拓扑统计力学
基本信息
- 批准号:2005630
- 负责人:
- 金额:$ 23.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Stochastic topology is the study of random shapes, and topological statistical mechanics is the study of how complicated shapes change as some parameter, such as pressure or entropy, varies. This work involves the intersection of several mathematical disciplines, including topology, geometry, and combinatorics. It also has applications outside of mathematics. Stochastic topology provides a well-posed null hypothesis and for the emerging area of topological data analysis. Topological statistical mechanics endeavors to find topological underpinnings of different phases of matter. The broader impacts of this project are focused on research training of PhD students, and to prepare them for careers in academia, data science, and industry. As part of this project, the PI will investigate new models of random simplicial complex, including random hypertrees. The fundamental group of a random 2-dimensional hypertree is an interesting model of random group, and one of the goals of the project is to prove that this group has Kazhdan's property (T) with high probability. It is an open-ended question whether these random hypertrees have a scaling limit; such a limit which would be higher-dimensional analogue of Aldous's continuum random tree. The PI will also investigate complicated configuration spaces, such as configuration spaces of hard disks or squares. These are interesting from the point of view of physics, since they represent the energy landscape for a hard-spheres system. Identifying the regimes where homology is trivial, nontrivial, or isomorphic to the ambient to the configuration space of points is a major part of the project, as are the asymptotic rate of growth of the Betti numbers as the number of particles tends to infinity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随机拓扑学是对随机形状的研究,而拓扑统计力学是研究复杂形状如何随着某些参数(如压力或熵)的变化而变化的。这项工作涉及到几个数学学科的交叉,包括拓扑学、几何学和组合学。它在数学之外也有应用。随机拓扑学为拓扑数据分析的新兴领域提供了一个完备的零假设。拓扑统计力学致力于寻找物质不同相的拓扑基础。该项目更广泛的影响集中在博士生的研究培训上,并为他们在学术界、数据科学和工业界的职业生涯做好准备。作为该项目的一部分,PI将研究随机简单复合体的新模型,包括随机超树。随机二维超树的基本群是一个有趣的随机群模型,课题的目标之一是证明该群具有高概率的Kazhdan性质(T)。这些随机超树是否有缩放极限是一个开放式的问题;这样的一个极限将是奥尔德斯连续统随机树的高维模拟。PI还将研究复杂的构型空间,如硬盘或正方形的构型空间。从物理学的角度来看,这些都很有趣,因为它们代表了硬球系统的能量景观。识别同态是平凡的、非平凡的或与点的环境构型空间同构的区域是该项目的主要部分,随着粒子数量趋于无穷大,Betti数的渐近增长率也是该项目的主要部分。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Kahle其他文献
Topology of random simplicial complexes: a survey
随机单纯复形的拓扑:一项调查
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Matthew Kahle - 通讯作者:
Matthew Kahle
Asymptotic Betti numbers for hard squares in the homological liquid regime
同调液体状态下硬平方的渐近贝蒂数
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
H. Alpert;Matthew Kahle;R. Macpherson - 通讯作者:
R. Macpherson
Homology of configuration spaces of hard squares in a rectangle
矩形中硬正方形配置空间的同调
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
H. Alpert;Ulrich Bauer;Matthew Kahle;R. Macpherson;Kelly Spendlove - 通讯作者:
Kelly Spendlove
The fundamental group of 2-dimensional random cubical complexes
二维随机立方复形的基本群
- DOI:
10.1002/rsa.21036 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Matthew Kahle;Elliot Paquette;'Erika Rold'an - 通讯作者:
'Erika Rold'an
Matthew Kahle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Kahle', 18)}}的其他基金
Algebraic Topology: Methods, Computation, and Science 2022
代数拓扑:方法、计算和科学 2022
- 批准号:
2208855 - 财政年份:2022
- 资助金额:
$ 23.94万 - 项目类别:
Standard Grant
TRIPODS+X:RES: Collaborative Research: Thermodynamic Phases and Configuration Space Topology
TRIPODS X:RES:协作研究:热力学相和构型空间拓扑
- 批准号:
1839358 - 财政年份:2018
- 资助金额:
$ 23.94万 - 项目类别:
Standard Grant
Conference on Topology, Geometry, and Data Analysis at The Ohio State University
俄亥俄州立大学拓扑、几何和数据分析会议
- 批准号:
1613094 - 财政年份:2016
- 资助金额:
$ 23.94万 - 项目类别:
Standard Grant
RTG: Algebraic Topology and Its Applications
RTG:代数拓扑及其应用
- 批准号:
1547357 - 财政年份:2016
- 资助金额:
$ 23.94万 - 项目类别:
Continuing Grant
AF: Small: Collaborative Research: Groups in Computer Science
AF:小型:协作研究:计算机科学小组
- 批准号:
1017182 - 财政年份:2010
- 资助金额:
$ 23.94万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Novel platforms for topology and non-Fermi liquids: From projected topological branes to non-Abelian and fractional materials
职业:拓扑和非费米液体的新颖平台:从投影拓扑膜到非阿贝尔和分数材料
- 批准号:
2238679 - 财政年份:2023
- 资助金额:
$ 23.94万 - 项目类别:
Continuing Grant
Comprehensive topological study on cobordism, bivariant theory, topology of spaces of morphisms and related topics
协边、二变理论、态射空间拓扑及相关主题的综合拓扑研究
- 批准号:
23K03117 - 财政年份:2023
- 资助金额:
$ 23.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Imaging the topology of proton therapy beams using topological proton-acoustic sensors
使用拓扑质子声传感器对质子治疗束的拓扑进行成像
- 批准号:
2884058 - 财政年份:2023
- 资助金额:
$ 23.94万 - 项目类别:
Studentship
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
- 批准号:
2304033 - 财政年份:2023
- 资助金额:
$ 23.94万 - 项目类别:
Standard Grant
Conference on Algebraic Topology and Topological Data Analysis
代数拓扑与拓扑数据分析会议
- 批准号:
2223905 - 财政年份:2022
- 资助金额:
$ 23.94万 - 项目类别:
Standard Grant
CAREER: Tuning Topology and Strong Correlations for the Next Generation of Topological Superconductors
职业:调整下一代拓扑超导体的拓扑和强相关性
- 批准号:
2145373 - 财政年份:2022
- 资助金额:
$ 23.94万 - 项目类别:
Continuing Grant
The investigation of the non-triviality of string topology in a topological quantum field theory and differentiable stacks
拓扑量子场论和可微堆栈中弦拓扑非平凡性的研究
- 批准号:
21H00982 - 财政年份:2021
- 资助金额:
$ 23.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Tunable topological hybrid materials via interface- and topology-engineered heterostructures
通过界面和拓扑工程异质结构的可调谐拓扑混合材料
- 批准号:
2004125 - 财政年份:2020
- 资助金额:
$ 23.94万 - 项目类别:
Continuing Grant
Entanglement and topology of time-reversal symmetric fractional topological insulators
时间反演对称分数拓扑绝缘体的纠缠和拓扑
- 批准号:
EP/P022995/1 - 财政年份:2017
- 资助金额:
$ 23.94万 - 项目类别:
Research Grant
Travel support grant for the program on "Interactions between topological recursion, modularity, quantum invariants and low-dimensional topology"
为“拓扑递归、模块化、量子不变量和低维拓扑之间的相互作用”项目提供差旅补助
- 批准号:
1642515 - 财政年份:2016
- 资助金额:
$ 23.94万 - 项目类别:
Standard Grant