CAREER: Probabilistic Foundations, Statistical Inference, and Invariance Principles for Evolving Combinatorial Structures
职业:演化组合结构的概率基础、统计推断和不变性原理
基本信息
- 批准号:1554092
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Most scientific conclusions rely on statistical analysis of data collected from some physical process. The statistical analysis, in turn, relies on assumptions which, if violated, can lead to incorrect or misleading outcomes. In many modern applications, the statistical modeling is further complicated by inherent structural inhomogeneities in the population. Specific examples include the spread of information in social networks, genetic variation among mitochondrial DNA sequences from different species, collisions of particles suspended in a non-uniform medium, and identification of suspicious activity in a criminal or terrorist network. With these applications in mind, the project initiates a systematic study of probabilistic models and inferential principles for data taken from heterogeneous or specially structured populations. Attainment of these goals requires techniques from several mathematical and scientific areas and should lead to progress at the intersection of applied science, statistics, probability, and mathematics. Project outcomes will lead to a better understanding of how fundamental statistical assumptions affect the validity of scientific conclusions. The mathematical theory and statistical methods developed should have a broad societal impact, as combinatorial stochastic processes are used throughout modern applications in physical, biological, and social sciences, national security, and beyond. The PI has extensive plans for training graduate and undergraduate students in the methods to be used, via courses on the foundations of statistics at both levels, the supervision of Ph.D. theses, and conferences and workshops on these topics for these and other early-career researchers. The plans are innovative and the PI will devote significant time and resources to them. In particular, a strong emphasis will be placed on attracting and hiring students from underprivileged backgrounds who are first-generation college students.The specific technical objective is a rigorous mathematical theory for understanding random structures that exhibit relative exchangeability and other invariance principles. A hallmark of the project is the in-depth study and rigorous development of theory and applications for edge exchangeable network models, which were first introduced by the PI as a novel invariance principle for network analysis. Desired outcomes include relative invariance principles, structural properties, and characterization theorems for evolving combinatorial structures. The project will also exploit deep connections between combinatorics, algebra, logic, and probability theory to refine prior work by de Finetti, Kingman, Aldous, Hoover, and Kallenberg, on graph limits and Levy-Ito-type representations of Feller processes on combinatorial state spaces. Theoretical developments should guide methodological advances in specific applications, including climate science, network science, and phylogenetics.
大多数科学结论都依赖于对从某些物理过程中收集的数据进行统计分析。反过来,统计分析依赖于假设,如果违反这些假设,可能导致不正确或误导性的结果。在许多现代应用中,统计建模由于群体中固有的结构不均匀性而进一步复杂化。具体的例子包括信息在社交网络中的传播、不同物种线粒体DNA序列之间的遗传变异、悬浮在不均匀介质中的粒子的碰撞以及识别犯罪或恐怖主义网络中的可疑活动。考虑到这些应用,该项目启动了一个系统的研究概率模型和推理原则的数据从异质或特殊结构的人口。这些目标的实现需要从几个数学和科学领域的技术,并应导致在应用科学,统计,概率和数学的交叉进步。项目成果将使人们更好地了解基本统计假设如何影响科学结论的有效性。开发的数学理论和统计方法应该具有广泛的社会影响,因为组合随机过程在物理,生物和社会科学,国家安全等领域的现代应用中使用。PI有广泛的计划培训研究生和本科生的方法要使用,通过课程的基础上统计在这两个级别,博士的监督。为这些和其他早期职业研究人员举办关于这些主题的论文、会议和研讨会。这些计划是创新的,PI将投入大量的时间和资源。特别强调吸引和雇用来自贫困背景的第一代大学生。具体的技术目标是理解表现出相对交换性和其他不变性原理的随机结构的严格数学理论。 该项目的一个标志是对边缘可交换网络模型的理论和应用进行深入研究和严格开发,该模型首先由PI作为网络分析的新不变性原理引入。 期望的结果包括相对不变性原则,结构特性,和特征定理的演变组合结构。该项目还将利用组合学,代数,逻辑和概率论之间的深刻联系,以完善de Finetti,金曼,Aldous,Hoover和Kallenberg先前的工作,关于组合状态空间上Feller过程的图极限和Levy-Ito型表示。理论发展应指导具体应用中的方法学进展,包括气候科学、网络科学和遗传学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harry Crane其他文献
The Logic of Typicality
典型性的逻辑
- DOI:
10.1142/9789811211720_0006 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Harry Crane;Isaac Wilhelm - 通讯作者:
Isaac Wilhelm
Some algebraic identities for the α-permanent
- DOI:
10.1016/j.laa.2013.09.028 - 发表时间:
2013-12 - 期刊:
- 影响因子:1.1
- 作者:
Harry Crane - 通讯作者:
Harry Crane
Exchangeable Markov Processes on $$[k]^{\mathbb N}$$ with Cadlag Sample Paths
- DOI:
10.1007/s10959-014-0566-8 - 发表时间:
2014-07-04 - 期刊:
- 影响因子:0.600
- 作者:
Harry Crane;Steven P. Lalley - 通讯作者:
Steven P. Lalley
Some algebraic identities for the alpha-permanent
- DOI:
- 发表时间:
2013-04 - 期刊:
- 影响因子:0
- 作者:
Harry Crane - 通讯作者:
Harry Crane
Generalized Ewens–Pitman model for Bayesian clustering
贝叶斯聚类的广义 Ewens-Pitman 模型
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Harry Crane - 通讯作者:
Harry Crane
Harry Crane的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harry Crane', 18)}}的其他基金
Modeling and Inference for Dynamic Network Analysis
动态网络分析的建模和推理
- 批准号:
2015365 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SBE: Small: Statistical Models and Methods for Dynamic Complex Networks
SBE:小型:动态复杂网络的统计模型和方法
- 批准号:
1523785 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
ProbAI: A Hub for the Mathematical and Computational Foundations of Probabilistic AI
ProbAI:概率人工智能的数学和计算基础中心
- 批准号:
EP/Y028783/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
RI: Medium: Foundations of Self-Supervised Learning Through the Lens of Probabilistic Generative Models
RI:媒介:通过概率生成模型的视角进行自我监督学习的基础
- 批准号:
2211907 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Probabilistic Foundations for Reinforcement Learning with Nonlinear Function Approximation
非线性函数逼近强化学习的概率基础
- 批准号:
548070-2020 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Postgraduate Scholarships - Doctoral
Formal Foundations for Verification of Physical and Probabilistic Systems
物理和概率系统验证的形式基础
- 批准号:
22H00520 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Probabilistic Foundations for Reinforcement Learning with Nonlinear Function Approximation
非线性函数逼近强化学习的概率基础
- 批准号:
548070-2020 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Postgraduate Scholarships - Doctoral
Oregon Programming Languages Summer School 2019: Foundations of Probabilistic Programming and Security
2019 年俄勒冈编程语言暑期学校:概率编程和安全基础
- 批准号:
1933086 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Theoretical Foundations for Probabilistic Models with Dense Random Matrices
职业:密集随机矩阵概率模型的理论基础
- 批准号:
1750362 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
SNNnow: Probabilistic Learning for Deep Spiking Neural Networks: Foundations and Hardware Co-Optimization
SNNnow:深度尖峰神经网络的概率学习:基础和硬件协同优化
- 批准号:
1710009 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Unified Probabilistic Localization for Sensor Networks: Theoretic and Practical Foundations
职业:传感器网络的统一概率定位:理论和实践基础
- 批准号:
0448062 - 财政年份:2005
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Philosophical Foundations for Probabilistic Inference and Probabilistic Prediction
概率推理和概率预测的哲学基础
- 批准号:
DP0343319 - 财政年份:2003
- 资助金额:
$ 40万 - 项目类别:
Discovery Projects