Evolving Combinatorial Structures
不断发展的组合结构
基本信息
- 批准号:1308899
- 负责人:
- 金额:$ 13.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project studies probability models for evolving combinatorial structures, particularly partition, tree and graph-valued stochastic processes. Specific topics to be studied include representation and characterization theorems of combinatorial Markov processes, continuum tree and interval graph scaling limits, consistent systems of partition, tree and graph-valued processes, and connections to random matrices and Levy processes. The dominant theme of the research will be the effect of probabilistic symmetries, especially exchangeability, on the structural properties of evolving large combinatorial objects, as these structural properties impact various practical aspects of these processes. As a result of this project, we should gain further understanding of models for time-varying discrete structures, especially partitions, trees and networks. Such processes arise as natural models in various disciplines, including genetics, physics, biology, computer science and statistics. In particular, understanding graph-valued processes has potentially far-reaching applications in the diverse and burgeoning field of complex networks. Effective models for real-world networks are relevant to problems in national security, public health, sociology, computer science and physical sciences. Other areas in which combinatorial models can be useful include phylogenetics, machine learning, statistics and Bayesian inference.
该项目研究演化组合结构的概率模型,特别是分区、树和图值随机过程。要研究的具体主题包括组合马尔可夫过程的表示和表征定理,连续统树和区间图缩放极限,划分的一致系统,树和图值过程,以及与随机矩阵和Levy过程的连接。研究的主要主题将是概率对称性,特别是互换性,对不断发展的大型组合对象的结构特性的影响,因为这些结构特性影响这些过程的各个实际方面。作为这个项目的结果,我们应该进一步了解时变离散结构的模型,特别是分区、树和网络。这些过程作为自然模型出现在各种学科中,包括遗传学、物理学、生物学、计算机科学和统计学。特别是,理解图值过程在复杂网络的多样化和新兴领域具有潜在的深远应用。现实世界网络的有效模型与国家安全、公共卫生、社会学、计算机科学和物理科学等领域的问题有关。组合模型的其他有用领域包括系统发育、机器学习、统计学和贝叶斯推理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harry Crane其他文献
The Logic of Typicality
典型性的逻辑
- DOI:
10.1142/9789811211720_0006 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Harry Crane;Isaac Wilhelm - 通讯作者:
Isaac Wilhelm
Some algebraic identities for the α-permanent
- DOI:
10.1016/j.laa.2013.09.028 - 发表时间:
2013-12 - 期刊:
- 影响因子:1.1
- 作者:
Harry Crane - 通讯作者:
Harry Crane
Exchangeable Markov Processes on $$[k]^{\mathbb N}$$ with Cadlag Sample Paths
- DOI:
10.1007/s10959-014-0566-8 - 发表时间:
2014-07-04 - 期刊:
- 影响因子:0.600
- 作者:
Harry Crane;Steven P. Lalley - 通讯作者:
Steven P. Lalley
Some algebraic identities for the alpha-permanent
- DOI:
- 发表时间:
2013-04 - 期刊:
- 影响因子:0
- 作者:
Harry Crane - 通讯作者:
Harry Crane
Generalized Ewens–Pitman model for Bayesian clustering
贝叶斯聚类的广义 Ewens-Pitman 模型
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Harry Crane - 通讯作者:
Harry Crane
Harry Crane的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harry Crane', 18)}}的其他基金
Modeling and Inference for Dynamic Network Analysis
动态网络分析的建模和推理
- 批准号:
2015365 - 财政年份:2020
- 资助金额:
$ 13.04万 - 项目类别:
Standard Grant
CAREER: Probabilistic Foundations, Statistical Inference, and Invariance Principles for Evolving Combinatorial Structures
职业:演化组合结构的概率基础、统计推断和不变性原理
- 批准号:
1554092 - 财政年份:2016
- 资助金额:
$ 13.04万 - 项目类别:
Continuing Grant
SBE: Small: Statistical Models and Methods for Dynamic Complex Networks
SBE:小型:动态复杂网络的统计模型和方法
- 批准号:
1523785 - 财政年份:2015
- 资助金额:
$ 13.04万 - 项目类别:
Standard Grant
相似海外基金
Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
- 批准号:
22KJ2603 - 财政年份:2023
- 资助金额:
$ 13.04万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Combinatorial Structures in Cluster Algebras
簇代数中的组合结构
- 批准号:
2246570 - 财政年份:2023
- 资助金额:
$ 13.04万 - 项目类别:
Standard Grant
Combinatorial structures on packing, covering, and configulation on hypergraphs
超图上的打包、覆盖和配置的组合结构
- 批准号:
22K03398 - 财政年份:2022
- 资助金额:
$ 13.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combinatorial Microscopies: Platforms for Probing Molecular and Cellular Dynamics and Structures
组合显微镜:探测分子和细胞动力学和结构的平台
- 批准号:
RGPIN-2022-04837 - 财政年份:2022
- 资助金额:
$ 13.04万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial designs with cyclic structures for designs of experiments, combinatorial testing, and codes
用于实验设计、组合测试和代码的循环结构组合设计
- 批准号:
22K13949 - 财政年份:2022
- 资助金额:
$ 13.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combinatorial structures in quantum field theory
量子场论中的组合结构
- 批准号:
RGPIN-2019-04412 - 财政年份:2022
- 资助金额:
$ 13.04万 - 项目类别:
Discovery Grants Program - Individual
Singularity analysis and the large scale behaviour of combinatorial structures
奇点分析和组合结构的大规模行为
- 批准号:
RGPIN-2017-04157 - 财政年份:2022
- 资助金额:
$ 13.04万 - 项目类别:
Discovery Grants Program - Individual
Exploiting the Combinatorial Structures Found in Constraint Programming Models as Multivariate Distributions
利用约束规划模型中的组合结构作为多元分布
- 批准号:
RGPIN-2017-05783 - 财政年份:2022
- 资助金额:
$ 13.04万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial and Algebraic Structures in Dynamics
动力学中的组合和代数结构
- 批准号:
2054643 - 财政年份:2021
- 资助金额:
$ 13.04万 - 项目类别:
Standard Grant
Singularity analysis and the large scale behaviour of combinatorial structures
奇点分析和组合结构的大规模行为
- 批准号:
RGPIN-2017-04157 - 财政年份:2021
- 资助金额:
$ 13.04万 - 项目类别:
Discovery Grants Program - Individual