SNNnow: Probabilistic Learning for Deep Spiking Neural Networks: Foundations and Hardware Co-Optimization
SNNnow:深度尖峰神经网络的概率学习:基础和硬件协同优化
基本信息
- 批准号:1710009
- 负责人:
- 金额:$ 38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Overview: Deep neural networks (DNN) have become the de-facto standard tool to carry out complex learningtasks. DNNs belong to the second generation of artificial neural networks (ANNs), which rely on neuronsthat implement memory-less non-linear transformations of the synaptic inputs. Motivated by the biologicalanalogy with the behavior of neurons in the brain, the third generation of neural networks, also referred toas Spiking Neural Networks (SNNs), was introduced in the nineties. In SNNs, synaptic input and neuronaloutput signals are spike trains. This proposal argues that the time for the use of SNNs as machine learningtools has come, and sets forth a systematic approach for the design and implementation of SNNs as learningand inference machines.Intellectual merit: SNNs have a number of unique advantages as compared to ANNs: (i) They are event-basedsystems with natural sparsity properties, which have the potential to make deep learning machines feasible forenergy-limited devices; (ii) They are uniquely capable to natively process data that comes in the form of timeencodedprocesses, for example, from bio-inspired sensors. The main goal of this project is the establishmentof a theoretical framework to enable the design of flexible spike-domain learning algorithms that are tailoredto the solution of supervised and unsupervised cognitive tasks, as well as their co-optimization on nanoscalehardware architectures. To this end, this project puts forth a principled probabilistic framework based on thegraphical formalism of Directed Information Graphs.Broader impact: The outcome of this research is expected to have a profound impact on the increasing numberof practical applications that are based on the processing of time-encoded signals, including biological sensorsand next-generation communication systems, and/or that require the adoption of computing solutions with asignificantly smaller power budget as compared to conventional DNNs. The research methodology is basedon a multi-disciplinary approach that integrates machine learning, information theory, probabilistic graphicalmodels, neuromorphic computing and device/system architecture at the nanoscale. The educational plan atthe home institution targets both undergraduate and graduate students via hands-on learning and experimentationactivities.
深度神经网络(DNN)已经成为执行复杂学习任务的事实上的标准工具。DNN属于第二代人工神经网络(ANN),它依赖于实现突触输入的无记忆非线性变换的神经元。受大脑中神经元行为的生物类比的启发,第三代神经网络,也被称为尖峰神经网络(SNN),在90年代被引入。在SNN中,突触输入和神经元输出信号是尖峰序列。该提案认为,使用SNN作为机器学习工具的时机已经到来,并提出了一个系统的方法,设计和实现SNN作为学习和推理机。智力优点:SNN有一些独特的优势相比,人工神经网络:(i)他们是基于事件的系统与自然稀疏属性,这有可能使深度学习机器可行的能量有限的设备;(ii)它们具有独特的能力,能够原生地处理以时间编码过程形式出现的数据,例如来自生物启发传感器的数据。该项目的主要目标是建立一个理论框架,以设计灵活的尖峰域学习算法,这些算法适合于有监督和无监督的认知任务的解决方案,以及它们在纳米级硬件架构上的协同优化。为此,该项目提出了一个基于有向信息图的图形形式主义的原则性概率框架。这项研究的成果预计将对越来越多的基于时间编码信号处理的实际应用产生深远的影响,包括生物传感器和下一代通信系统,和/或需要采用与传统DNN相比具有显著更小的功率预算的计算解决方案。该研究方法基于多学科方法,集成了机器学习,信息论,概率图形模型,神经形态计算和纳米级设备/系统架构。教育计划在家庭机构的目标是本科生和研究生通过动手学习和实验活动。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Introduction to Probabilistic Spiking Neural Networks: Probabilistic Models, Learning Rules, and Applications
- DOI:10.1109/msp.2019.2935234
- 发表时间:2019-11-01
- 期刊:
- 影响因子:14.9
- 作者:Jang, Hyeryung;Simeone, Osvaldo;Gruening, Andre
- 通讯作者:Gruening, Andre
Building Next-Generation AI systems: Co-Optimization of Algorithms, Architectures, and Nanoscale Memristive Devices
构建下一代人工智能系统:算法、架构和纳米级忆阻器件的协同优化
- DOI:10.1109/imw.2019.8739740
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Rajendran, Bipin;Sebastian, Abu;Eleftheriou, Evangelos
- 通讯作者:Eleftheriou, Evangelos
FlexiDRAM: A Flexible in-DRAM Framework to Enable Parallel General-Purpose Computation
FlexiDRAM:一种灵活的 DRAM 框架,可实现并行通用计算
- DOI:10.1145/3531437.3539721
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhou, R;Roohi, A;Misra, D;Angizi, S
- 通讯作者:Angizi, S
Adversarial Training for Probabilistic Spiking Neural Networks
- DOI:10.1109/spawc.2018.8446003
- 发表时间:2018-02
- 期刊:
- 影响因子:0
- 作者:Alireza Bagheri;O. Simeone;B. Rajendran
- 通讯作者:Alireza Bagheri;O. Simeone;B. Rajendran
Well-Posed Verilog-A Compact Model for Phase Change Memory
- DOI:10.1109/sispad.2018.8551667
- 发表时间:2018-09
- 期刊:
- 影响因子:0
- 作者:Shruti R. Kulkarni;Deepak Kadetotad;Jae-sun Seo;B. Rajendran
- 通讯作者:Shruti R. Kulkarni;Deepak Kadetotad;Jae-sun Seo;B. Rajendran
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Durgamadhab Misra其他文献
Durgamadhab Misra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Durgamadhab Misra', 18)}}的其他基金
KAUST-NSF Research Conference on Electronic Materials, Devices and Systems for a Sustainable Future at
KAUST-NSF 关于电子材料、设备和系统可持续未来的研究会议
- 批准号:
1503446 - 财政年份:2015
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
International Symposium on High Dielectric Constant and Other Dielectric Materials for Nanoelectronics and Photonics. To be Held in Las Vegas, Nevada, October 10-15, 2010
高介电常数和其他介电材料用于纳米电子学和光子学的国际研讨会。
- 批准号:
1020234 - 财政年份:2010
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
International Symposium on High Dielectric Constant Gate Stacks will be held in Los Angeles, California on October 16-21, 2005.
高介电常数栅极堆栈国际研讨会将于2005年10月16日至21日在加利福尼亚州洛杉矶举行。
- 批准号:
0535679 - 财政年份:2005
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Passivation of Silicon Dangling Bonds by Deuterium Implantation
氘注入钝化硅悬键
- 批准号:
0140584 - 财政年份:2002
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant
Acquisition of Specialized Instrumentation for Research & Development of Materials, Devices, and Processes
采购专用研究仪器
- 批准号:
9732697 - 财政年份:1998
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Study of Defects and Process induced Damage in Si1-xGex Materials
Si1-xGex 材料中的缺陷和过程诱导损伤的研究
- 批准号:
9207665 - 财政年份:1992
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
相似海外基金
Understanding conscious and unconscious learning of probabilistic information
理解概率信息的有意识和无意识学习
- 批准号:
24K16877 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Probabilistic arrival time prediction algorithm using a-priori knowledge and machine learning to enable sustainable air traffic management
使用先验知识和机器学习的概率到达时间预测算法,以实现可持续的空中交通管理
- 批准号:
24K07723 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Accelerating Probabilistic Predictions of Sea-level Rise with Deep Learning
职业:利用深度学习加速海平面上升的概率预测
- 批准号:
2238316 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Probabilistic deep learning models and integrated biological experiments for analyzing dynamic and heterogeneous microbiomes
用于分析动态和异质微生物组的概率深度学习模型和集成生物实验
- 批准号:
10622713 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Neural circuit mechanisms of affective probabilistic learning
情感概率学习的神经回路机制
- 批准号:
10744542 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Uncertainty Modeling of Learning to Enable Probabilistic Perception
学习的不确定性建模以实现概率感知
- 批准号:
2305532 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
A study on probabilistic models for novel intelligent systems that cope with uncertainty of learning models
应对学习模型不确定性的新型智能系统的概率模型研究
- 批准号:
23K03773 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RI: Medium: Foundations of Self-Supervised Learning Through the Lens of Probabilistic Generative Models
RI:媒介:通过概率生成模型的视角进行自我监督学习的基础
- 批准号:
2211907 - 财政年份:2022
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Fast and Furious(ly) Safe: Predicting Intent of Agents on the Road Using Probabilistic Programming and Reinforcement Learning
《速度与激情》安全:使用概率编程和强化学习预测道路上智能体的意图
- 批准号:
559891-2021 - 财政年份:2022
- 资助金额:
$ 38万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Probabilistic Machine Learning Driven Discovery and Design of New Materials for Sustainable Energy and Transport
概率机器学习驱动可持续能源和运输新材料的发现和设计
- 批准号:
RGPIN-2018-04642 - 财政年份:2022
- 资助金额:
$ 38万 - 项目类别:
Discovery Grants Program - Individual