Cryogenic Ultrafast Scattering-type Terahertz-probe Optical-pump Microscopy (CUSTOM)
低温超快散射型太赫兹探针光泵显微镜(定制)
基本信息
- 批准号:EP/T01914X/1
- 负责人:
- 金额:$ 97.71万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technology underpins our society and economy and devices are constantly evolving, becoming smaller, faster, and 'smarter'. However, current technologies are fast approaching their physical limit and suffer from high, inefficient power consumption and poor energy storage. Integrated photonic, electronic and quantum technologies have the potential to disrupt these existing technologies, providing '21st-century products' with improved performance including energy efficiency. These devices will have a broad range of applications and will impact several sectors, such as healthcare, defence and security, ICT, and clean energy. Advanced functional materials, including graphene, 2D materials and semiconductor nanostructures, are the building blocks of these devices with the potential to deliver a step-change in performance through exploitation of novel quantum effects. An in-depth understanding of their electronic, photonic and spintronic properties, and how they may be controlled, enhanced and exploited is therefore essential.Although several characterisation techniques exist it still remains difficult to obtain a complete picture of their optoelectronic/spintronic behaviour. Often a combination of methodologies are required to extract device parameters, such as charge carrier mobility and lifetime; and these techniques have their own limitations - they can be destructive, only perform ensemble measurements, or only operate at room temperature and ambient pressure. Notably, material characterisation remains challenging on nanometre length scales, with the majority of techniques limited in resolution to the micron scale. As the majority of devices rely on controlling and designing electronic behaviour at the nanoscale (e.g. pn junctions), nanoscale spatial resolution is essential for accelerating device development. There is therefore an urgent need for state-of-the-art research infrastructure that can provide nanometre spatial resolution and combine the strengths of current methodologies to investigate materials over a large parameter range.The proposed investment will establish a new national facility for advanced nanoscale material characterisation and will provide the 'missing tool' required to conduct simultaneous imaging and spectroscopy at 3 extremes: ultrafast (<1ps) timescales, nanoscale (<30nm) length scales, and low temperatures (<10K). By combining ultrafast THz and midinfrared (MIR) spectroscopy with cryogenic scattering-type near-field optical microscopy, this facility will provide an exclusive tomographic tool that allows surface-sensitive, non-destructive optoelectronic characterisation of individual nanomaterials over a temperature range of 4.2-300K. As the THz and MIR frequency range encompasses the energy range of several fundamental quasiparticles (e.g. plasmons, free electrons and holes, and magnons), this capability will open up a new parameter range for investigating low-energy excitations in advanced functional materials, including III-V nanowires, 2D materials, topological insulators, and chalcogenides. It will allow differential depth-profiling and 3D mapping of the local dielectric function, electrical conductivity, chemical composition, stress/strain fields with <30nm spatial resolution, and enable investigation of nanoscale photoinduced carrier dynamics and ultrafast vibrational dynamics with <1ps temporal resolution. The facility will be unique to the UK/EU and will provide unprecedented capability for advanced functional materials research. Access to the tool will be made available to UK academics and industry undertaking research in this area. The system will be housed within the UK National Laboratory for Advanced Materials (the Henry Royce Institute) at the University of Manchester and will link with other key materials research infrastructure, such as P-NAME and Royce MBE systems, to form a key chain in the feedback loop between materials optimisation and device development.
技术支撑着我们的社会和经济,设备也在不断发展,变得更小、更快、更智能。然而,目前的技术正在迅速接近其物理极限,并受到高、低效率的电力消耗和糟糕的能量存储的困扰。集成的光子、电子和量子技术有可能颠覆这些现有技术,提供具有更高性能(包括能源效率)的“21世纪产品”。这些设备将有广泛的应用,并将影响几个行业,如医疗保健、国防和安全、信息和通信技术以及清洁能源。先进的功能材料,包括石墨烯、2D材料和半导体纳米结构,是这些器件的基石,有可能通过开发新的量子效应来实现性能的阶梯变化。因此,深入了解它们的电子、光子和自旋电子学特性,以及如何控制、增强和利用它们是至关重要的。尽管存在几种表征技术,但仍然很难获得它们的光电子/自旋电子学行为的完整图景。通常需要多种方法组合来提取器件参数,如载流子迁移率和寿命;这些技术有其自身的局限性-它们可能是破坏性的,只能执行整体测量,或者只能在室温和环境压力下运行。值得注意的是,材料的表征在纳米尺度上仍然具有挑战性,大多数技术在分辨率方面仅限于微米尺度。由于大多数设备依赖于在纳米级(例如pn结)控制和设计电子行为,纳米级的空间分辨率对于加速设备开发至关重要。因此,迫切需要最先进的研究基础设施,能够提供纳米级的空间分辨率,并结合当前方法的优势,在大参数范围内研究材料。拟议的投资将建立一个先进的纳米材料表征的新国家设施,并将提供在三个极端同时进行成像和光谱所需的“缺失工具”:超快(<;1ps)时间尺度、纳米(<;30 nm)长度尺度和低温(<;10K)。通过将超快太赫兹和中红外(MIR)光谱与低温散射型近场光学显微镜相结合,该设施将提供一种独特的断层扫描工具,允许在4.2-300K的温度范围内对单个纳米材料进行表面敏感、无损的光电表征。由于太赫兹和MIR频率范围涵盖了几个基本准粒子(例如等离子体、自由电子和空穴以及磁子)的能量范围,这一能力将为研究先进功能材料中的低能激发开辟一个新的参数范围,包括III-V纳米线、2D材料、拓扑绝缘体和硫系化合物。它将允许以30 nm的空间分辨率对局部介电函数、电导率、化学成分、应力/应变场进行差分深度剖析和3D映射,并以<;1ps的时间分辨率研究纳米尺度的光致载流子动力学和超快振动动力学。该设施将是英国/欧盟独一无二的,将为先进功能材料研究提供前所未有的能力。在这一领域进行研究的英国学者和行业将可以使用该工具。该系统将被安置在曼彻斯特大学的英国先进材料国家实验室(亨利·罗伊斯研究所)内,并将与其他关键材料研究基础设施连接起来,如P-NAME和罗伊斯MBE系统,以形成材料优化和设备开发之间的反馈回路中的关键链。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Topological materials for helicity-dependent THz emission
- DOI:10.1109/irmmw-thz57677.2023.10299323
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:A. Mannan;Y. Saboon;C. Q. Xia;D. Damry;P. Schoenherr;D. Prabhakaran;L. M. Herz;T. Hesjedal;M. B. Johnston;J. Boland
- 通讯作者:A. Mannan;Y. Saboon;C. Q. Xia;D. Damry;P. Schoenherr;D. Prabhakaran;L. M. Herz;T. Hesjedal;M. B. Johnston;J. Boland
Surface Oxidisation Layer Identification of Indium Nitride Nanoparticles via s-SNOM
通过 s-SNOM 识别氮化铟纳米粒子的表面氧化层
- DOI:10.1109/irmmw-thz57677.2023.10298963
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Liu X
- 通讯作者:Liu X
Investigating the Effect of Crystal Morphology on Optoelectronic Properties of Zinc Phosphide Thin Films via Optical-pump Terahertz Probe Spectroscopy
通过光泵太赫兹探针光谱研究晶体形态对磷化锌薄膜光电性能的影响
- DOI:10.1109/irmmw-thz57677.2023.10299122
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Huang Y
- 通讯作者:Huang Y
Topological materials as promising candidates for tuneable helicity-dependent terahertz emitters
- DOI:10.1117/12.2681745
- 发表时间:2023-10
- 期刊:
- 影响因子:1.9
- 作者:J. Boland;D. Damry;Chelsea Q. Xia;Y. Saboon;A. Mannan;Piet Schoenherr;D. Prabhakaran;Laura M. Herz;T. Hesjedal;Michael B. Johnston
- 通讯作者:J. Boland;D. Damry;Chelsea Q. Xia;Y. Saboon;A. Mannan;Piet Schoenherr;D. Prabhakaran;Laura M. Herz;T. Hesjedal;Michael B. Johnston
The 2023 terahertz science and technology roadmap
- DOI:10.1088/1361-6463/acbe4c
- 发表时间:2023-06-01
- 期刊:
- 影响因子:3.4
- 作者:Leitenstorfer, Alfred;Moskalenko, Andrey S.;Cunningham, John
- 通讯作者:Cunningham, John
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Curry其他文献
Richard Curry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Curry', 18)}}的其他基金
Supporting World-Class Labs at the University of Manchester (2022)
支持曼彻斯特大学世界一流的实验室(2022)
- 批准号:
EP/X035093/1 - 财政年份:2023
- 资助金额:
$ 97.71万 - 项目类别:
Research Grant
Future Laser Manufacturing of Nanostructured Metal Oxide Semiconductors for Functional Materials and Devices
用于功能材料和器件的纳米结构金属氧化物半导体的未来激光制造
- 批准号:
EP/V008188/1 - 财政年份:2021
- 资助金额:
$ 97.71万 - 项目类别:
Research Grant
Nanoscale Advanced Materials Engineering
纳米先进材料工程
- 批准号:
EP/V001914/1 - 财政年份:2021
- 资助金额:
$ 97.71万 - 项目类别:
Research Grant
Magnetically-Doped III-V Semiconductor Nanostructures
磁掺杂 III-V 族半导体纳米结构
- 批准号:
NE/T014792/1 - 财政年份:2020
- 资助金额:
$ 97.71万 - 项目类别:
Research Grant
Platform for Nanoscale Advanced Materials Engineering (P-NAME)
纳米先进材料工程平台 (P-NAME)
- 批准号:
EP/R025576/1 - 财政年份:2018
- 资助金额:
$ 97.71万 - 项目类别:
Research Grant
Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
- 批准号:
EP/N020057/2 - 财政年份:2017
- 资助金额:
$ 97.71万 - 项目类别:
Research Grant
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
- 批准号:
EP/M015513/2 - 财政年份:2017
- 资助金额:
$ 97.71万 - 项目类别:
Research Grant
Quantum technology capital: Multi-species single-ion implantation
量子技术资本:多物种单离子注入
- 批准号:
EP/N015215/1 - 财政年份:2016
- 资助金额:
$ 97.71万 - 项目类别:
Research Grant
Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
- 批准号:
EP/N020057/1 - 财政年份:2016
- 资助金额:
$ 97.71万 - 项目类别:
Research Grant
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
- 批准号:
EP/M015513/1 - 财政年份:2015
- 资助金额:
$ 97.71万 - 项目类别:
Research Grant
相似国自然基金
基于Ultrafast-VPCR技术的半夏药材及其成药快速基因检测体系的建立以及应用
- 批准号:81973434
- 批准年份:2019
- 资助金额:54.0 万元
- 项目类别:面上项目
相似海外基金
A New Effect in Ultrafast X-ray Scattering
超快X射线散射的新效应
- 批准号:
EP/V049240/2 - 财政年份:2022
- 资助金额:
$ 97.71万 - 项目类别:
Research Grant
Direct Electron Detection Camera for Next-Generation Sensitivity in Ultrafast Electron Scattering Measurements
直接电子探测相机可提高超快电子散射测量中的下一代灵敏度
- 批准号:
RTI-2023-00449 - 财政年份:2022
- 资助金额:
$ 97.71万 - 项目类别:
Research Tools and Instruments
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
- 批准号:
RGPIN-2019-06001 - 财政年份:2022
- 资助金额:
$ 97.71万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
- 批准号:
RGPIN-2019-06001 - 财政年份:2021
- 资助金额:
$ 97.71万 - 项目类别:
Discovery Grants Program - Individual
A New Effect in Ultrafast X-ray Scattering
超快X射线散射的新效应
- 批准号:
EP/V049240/1 - 财政年份:2021
- 资助金额:
$ 97.71万 - 项目类别:
Research Grant
Multi-Mode RF Electron Pulse Compression for Ultrafast Electron Scattering
用于超快电子散射的多模式射频电子脉冲压缩
- 批准号:
RTI-2021-00355 - 财政年份:2020
- 资助金额:
$ 97.71万 - 项目类别:
Research Tools and Instruments
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
- 批准号:
RGPIN-2019-06001 - 财政年份:2020
- 资助金额:
$ 97.71万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
- 批准号:
RGPIN-2019-06001 - 财政年份:2019
- 资助金额:
$ 97.71万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast Electron Scattering at Low Temperatures
低温下超快电子散射
- 批准号:
RTI-2019-00586 - 财政年份:2018
- 资助金额:
$ 97.71万 - 项目类别:
Research Tools and Instruments
Visualizing ultrafast dynamics of molecular structure with femtosecond X-ray solution scattering
利用飞秒 X 射线溶液散射可视化分子结构的超快动力学
- 批准号:
17H06141 - 财政年份:2017
- 资助金额:
$ 97.71万 - 项目类别:
Grant-in-Aid for Scientific Research (S)














{{item.name}}会员




