QuBBD: Collaborative Research: Advancing mHealth using Big Data Analytics: Statistical and Dynamical Systems Modeling of Real-Time Adaptive m-Intervention for Pain

QuBBD:协作研究:利用大数据分析推进移动医疗:疼痛实时自适应移动干预的统计和动态系统建模

基本信息

  • 批准号:
    1557712
  • 负责人:
  • 金额:
    $ 0.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-15 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

With the growing popularity of mobile phone technology, new opportunities have arisen for real-time adaptive medical intervention. The simultaneous growth of multiple "big data" sources (e.g., mobile health data, electronic health records, lab test results, genomic data) allows for the development of personalized recommendations. This award supports initiation of a collaborative research project that will generate a new mathematical model for changes in subjective pain over time in patients with chronic conditions. The model will be combined with statistical techniques to ultimately obtain optimized, continuously-updated treatment plans balancing competing demands of pain reduction and medication minimization. Those resulting personalized treatment plans will be incorporated into a currently active pilot study on mobile intervention in patients living with chronic pain due to sickle cell disease (SCD). Since nearly a quarter of patient visits to the emergency room are for conditions that could have been managed as outpatients, it is crucial to improve mobile health technologies to allow these patients to quickly recognize and receive appropriate health care information. There currently is no standard algorithm or analytical method for real-time adaptive treatment recommendations for chronic conditions like pain. Furthermore, current state-of-the-art methods have difficulty in handling continuous-time decision optimization using big data. The proposed model will consist of a dynamical systems approach using differential equations to forecast future pain levels, as well as a statistical approach tying system parameters to patient data (including reported pain levels, medication history, personal characteristics and other health records). A third key component will be the development and pilot study of a new control and optimization strategy to balance the competing demands of pain reduction and drug dosage minimization. This award is supported by the National Institutes of Health Big Data to Knowledge (BD2K) Initiative in partnership with the National Science Foundation Division of Mathematical Sciences.
随着手机技术的日益普及,实时自适应医疗干预出现了新的机遇。多个“大数据”来源(例如,移动健康数据、电子健康记录、实验室检测结果、基因组数据)的同时增长使得个性化建议的开发成为可能。该奖项支持启动一个合作研究项目,该项目将为慢性病患者主观疼痛随时间的变化生成一个新的数学模型。该模型将与统计技术相结合,最终获得优化的、不断更新的治疗计划,以平衡疼痛减轻和药物最小化的相互竞争的需求。这些个性化治疗计划将被纳入目前正在进行的一项关于移动干预因镰状细胞病(SCD)导致的慢性疼痛患者的试点研究。由于到急诊室就诊的患者中有近四分之一是本可以作为门诊患者处理的疾病,因此改进移动医疗技术至关重要,使这些患者能够快速识别和接收适当的医疗信息。目前还没有标准的算法或分析方法来为疼痛等慢性疾病提供实时自适应治疗建议。此外,目前最先进的方法很难处理使用大数据的连续时间决策优化。建议的模型将包括使用微分方程预测未来疼痛水平的动态系统方法,以及将系统参数与患者数据(包括报告的疼痛水平、用药历史、个人特征和其他健康记录)捆绑在一起的统计方法。第三个关键部分将是开发和试点研究一种新的控制和优化策略,以平衡减轻疼痛和最大限度减少药物剂量的相互竞争的需求。该奖项由国家卫生研究院大数据向知识转化(BD2K)倡议与国家科学基金会数学科学部合作支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qi Long其他文献

Nutritional and lipid profile status of children with spinal muscular atrophy in China: A retrospective case–control study
中国脊髓性肌萎缩症儿童的营养和血脂状况:回顾性病例对照研究
  • DOI:
    10.1097/cm9.0000000000003049
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Yijie Feng;Jia;M. Yao;Jianing Jin;Yiqin Cui;Qi Long;Fei Chen;Yi Hong;Dongming Zhou;J. Hu;Xiao Chen;Feng Gao;Changzheng Yuan;S. Mao
  • 通讯作者:
    S. Mao
Analysis of truck-related crashes of freeways in China
我国高速公路货车事故分析
  • DOI:
    10.1177/1687814018822186
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xu Ting;Jiang Ruisen;Zhao Lei;Qi Long
  • 通讯作者:
    Qi Long
Su1119 – Is the Age of Diagnosis of Esophageal Adenocarcinoma Getting Younger? Analysis At a Tertiary Care Center
  • DOI:
    10.1016/s0016-5085(19)38151-x
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alexandra L. Strauss;Eun Jeong Min;Qi Long;Peter Gabriel;Yu-Xiao Yang;Gary W. Falk
  • 通讯作者:
    Gary W. Falk
Exploring urban environmental semantics for air quality prediction using explainable multi-view spatiotemporal graph neural networks
使用可解释的多视图时空图神经网络探索用于空气质量预测的城市环境语义
  • DOI:
    10.1016/j.apgeog.2025.103605
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    5.400
  • 作者:
    Qi Long;Jun Ma
  • 通讯作者:
    Jun Ma
Glucose restriction induces degeneration of neurons with mitochondrial DNA depletion by altering ER-mitochondria calcium transfer
葡萄糖限制通过改变内质网-线粒体钙转移,诱导线粒体 DNA 耗竭的神经元变性
  • DOI:
    10.1038/s41380-025-03069-y
  • 发表时间:
    2025-06-03
  • 期刊:
  • 影响因子:
    10.100
  • 作者:
    Lingyan Zhou;Feixiang Bao;Jiajun Zheng;Yingzhe Ding;Jiahui Xiao;Jian Zhang;Yongpeng Qin;Liang Yang;Yi Wu;Qi Meng;Manjiao Lu;Qi Long;Lingli Hu;Chong Li;Haitao Wang;Shijuan Huang;Linpeng Li;Junwei Wang;Wuming Wang;Gang Lu;Wai-Yee Chan;Dajiang Qin;Gong Chen;Xingguo Liu
  • 通讯作者:
    Xingguo Liu

Qi Long的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

QuBBD: Collaborative Research: Quantifying Morphologic Phenotypes in Prostate Cancer - Developing Topological Descriptors for Machine Learning Algorithms
QuBBD:合作研究:量化前列腺癌的形态表型 - 开发机器学习算法的拓扑描述符
  • 批准号:
    1664858
  • 财政年份:
    2017
  • 资助金额:
    $ 0.23万
  • 项目类别:
    Standard Grant
QuBBD: Collaborative Research: Quantifying Morphologic Phenotypes in Prostate Cancer - Developing Topological Descriptors for Machine Learning Algorithms
QuBBD:合作研究:量化前列腺癌的形态表型 - 开发机器学习算法的拓扑描述符
  • 批准号:
    1664848
  • 财政年份:
    2017
  • 资助金额:
    $ 0.23万
  • 项目类别:
    Standard Grant
QuBBD: Collaborative Research: Precision medicine and the management of infectious diseases
QuBBD:合作研究:精准医学和传染病管理
  • 批准号:
    1557742
  • 财政年份:
    2015
  • 资助金额:
    $ 0.23万
  • 项目类别:
    Standard Grant
QuBBD: Collaborative Research: Interactive Ensemble clustering for mixed data with application to mood disorders
QuBBD:协作研究:混合数据的交互式集成聚类及其在情绪障碍中的应用
  • 批准号:
    1557593
  • 财政年份:
    2015
  • 资助金额:
    $ 0.23万
  • 项目类别:
    Standard Grant
QuBBD: Collaborative Research: Interactive Ensemble clustering for mixed data with application to mood disorders
QuBBD:协作研究:混合数据的交互式集成聚类及其在情绪障碍中的应用
  • 批准号:
    1557642
  • 财政年份:
    2015
  • 资助金额:
    $ 0.23万
  • 项目类别:
    Standard Grant
QuBBD: Collaborative Research: Towards Automated Quantitative Prostate Cancer Diagnosis
QuBBD:合作研究:实现前列腺癌自动化定量诊断
  • 批准号:
    1557750
  • 财政年份:
    2015
  • 资助金额:
    $ 0.23万
  • 项目类别:
    Standard Grant
QuBBD: Collaborative Research: Personalized Predictive Neuromarkers for Stress-Related Health Risks
QuBBD:合作研究:压力相关健康风险的个性化预测神经标志物
  • 批准号:
    1557572
  • 财政年份:
    2015
  • 资助金额:
    $ 0.23万
  • 项目类别:
    Standard Grant
QuBBD: Collaborative Research: Advancing mHealth using Big Data Analytics: Statistical and Dynamical Systems Modeling of Real-Time Adaptive m-Intervention for Pain
QuBBD:协作研究:利用大数据分析推进移动医疗:疼痛实时自适应移动干预的统计和动态系统建模
  • 批准号:
    1557727
  • 财政年份:
    2015
  • 资助金额:
    $ 0.23万
  • 项目类别:
    Standard Grant
QuBBD: Collaborative Research: SMART -- Spatial-Nonspatial Multidimensional Adaptive Radiotherapy Treatment
QuBBD:合作研究:SMART——空间-非空间多维适应性放射治疗
  • 批准号:
    1557559
  • 财政年份:
    2015
  • 资助金额:
    $ 0.23万
  • 项目类别:
    Standard Grant
QuBBD: Collaborative Research: SMART -- Spatial-Nonspatial Multidimensional Adaptive Radiotherapy Treatment
QuBBD:合作研究:SMART——空间-非空间多维适应性放射治疗
  • 批准号:
    1557679
  • 财政年份:
    2015
  • 资助金额:
    $ 0.23万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了