QuBBD: Collaborative Research: Quantifying Morphologic Phenotypes in Prostate Cancer - Developing Topological Descriptors for Machine Learning Algorithms
QuBBD:合作研究:量化前列腺癌的形态表型 - 开发机器学习算法的拓扑描述符
基本信息
- 批准号:1664858
- 负责人:
- 金额:$ 42.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The long-term goal of this project is to develop quantitative methodology for detecting geometric and topological features in point clouds extracted from (histology) images. Of particular relevance, this project considers the setting of prostate cancer classification, which is based on a pathologist grading of histology slides using the Gleason grading system. These pathology slides are a source of biomedical big data that are increasingly available as archived material. Developing these quantitative methods will be a significant advance towards a (semi-)automated quantification of prostate cancer aggressiveness. This award supports an interdisciplinary team of investigators in computational mathematics, computer science, biomedical engineering, and pathology to develop mathematical and computational tools based on topological descriptors and machine learning in order to distinguish between different morphological types of prostate cancer.This research will develop quantitative topological descriptors (e.g., persistence diagrams and summaries) that describe natural histologic phenotypes in prostate cancer, in order to provide explanatory information to assist in providing improved diagnostics/prognostics and insight into the best course of treatment for the patient. This will be accomplished through developing graphical models via unsupervised machine learning that increase our understanding of prostate cancer subtypes. The long-term goal is to develop imaging biomarkers that better identify indolent from aggressive prostate cancer compared to existing, subjective, and variable human observer analyses (i.e., the Gleason score). This project takes steps towards a novel quantitative methodology for prostate cancer classification, as well as towards developing topological methods for statistically distinguishing different types of glandular architectures.
该项目的长期目标是开发定量方法,用于检测从(组织学)图像中提取的点云的几何和拓扑特征。特别相关的是,本项目考虑了前列腺癌分类的设置,这是基于病理学家使用Gleason分级系统对组织学切片进行分级。这些病理切片是生物医学大数据的一个来源,越来越多的人可以作为存档材料获得这些数据。发展这些定量方法将是迈向前列腺癌侵袭性(半)自动化定量的重大进展。该奖项支持计算数学、计算机科学、生物医学工程和病理学领域的跨学科研究团队开发基于拓扑描述符和机器学习的数学和计算工具,以区分前列腺癌的不同形态类型。本研究将开发定量的拓扑描述符(例如,持久性图和摘要)来描述前列腺癌的自然组织学表型,以提供解释性信息,以帮助提供改进的诊断/预后和洞察患者的最佳治疗过程。这将通过通过无监督机器学习开发图形模型来实现,从而增加我们对前列腺癌亚型的理解。长期目标是开发成像生物标志物,与现有的、主观的、可变的人类观察者分析(即Gleason评分)相比,更好地识别侵袭性前列腺癌的惰性。该项目采取步骤,为前列腺癌分类的一种新的定量方法,以及对发展拓扑方法统计区分不同类型的腺体结构。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DBSpan: Density-Based Clustering Using a Spanner, With an Application to Persistence Diagrams
DBSpan:使用 Spanner 的基于密度的集群以及持久性图的应用
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Fasy, Brittany Terese;Millman, David L.;Pryor, Elliott;Stouffer, Nathan
- 通讯作者:Stouffer, Nathan
Comparing Distance Metrics on Vectorized Persistence Summaries
比较矢量化持久性摘要的距离度量
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Fasy, Brittany Terese;Qin, Yu;Summa, Brian;Wenk, Carola
- 通讯作者:Wenk, Carola
Combinatorial Conditions for Directed Collapsing
定向塌陷的组合条件
- DOI:10.1007/978-3-030-95519-9
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Belton, Robin;Brooks, Robyn;Ebli, Stefania;Fajstrup, Lisbeth;Fasy, Brittany Terese;Sanderson, Nicole;Vidaurre, Elizabeth
- 通讯作者:Vidaurre, Elizabeth
Curvature Estimates of Point Clouds as a Tool in Quantitative Prostate Cancer Classification
点云曲率估计作为前列腺癌定量分类的工具
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Schenfisch, Anna;Fasy, Brittany Terese
- 通讯作者:Fasy, Brittany Terese
On the Reconstruction of Geodesic Subspaces of ℝ^N
关于∄^N测地线子空间的重构
- DOI:10.1142/s0218195922500066
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Fasy, Brittany Terese;Komendarczyk, Rafal;Majhi, Sushovan;Wenk, Carola
- 通讯作者:Wenk, Carola
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brittany Fasy其他文献
Brittany Fasy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brittany Fasy', 18)}}的其他基金
Building a Montana Computing Consortium
建立蒙大拿州计算联盟
- 批准号:
2221684 - 财政年份:2022
- 资助金额:
$ 42.07万 - 项目类别:
Standard Grant
Topology for Data Science: An Introductory Workshop for Undergraduates
数据科学拓扑:本科生入门研讨会
- 批准号:
1955925 - 财政年份:2020
- 资助金额:
$ 42.07万 - 项目类别:
Standard Grant
Collaborative Research: Indian Education in Computing: a Montana Story
合作研究:印度计算机教育:蒙大拿州的故事
- 批准号:
2031795 - 财政年份:2020
- 资助金额:
$ 42.07万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Statistical Approaches to Topological Data Analysis that Address Questions in Complex Data
FRG:协作研究:解决复杂数据问题的拓扑数据分析统计方法
- 批准号:
1854336 - 财政年份:2019
- 资助金额:
$ 42.07万 - 项目类别:
Standard Grant
Improving the Pipeline for Rural and American Indian Students Entering Computer Science Via Storytelling
通过讲故事改善农村和美国印第安学生进入计算机科学的渠道
- 批准号:
1657553 - 财政年份:2017
- 资助金额:
$ 42.07万 - 项目类别:
Continuing Grant
AF: Small: Collaborative Research: Geometric and Topological Algorithms for Analyzing Road Network Data
AF:小型:协作研究:用于分析道路网络数据的几何和拓扑算法
- 批准号:
1618605 - 财政年份:2016
- 资助金额:
$ 42.07万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Towards Automated Quantitative Prostate Cancer Diagnosis
QuBBD:合作研究:实现前列腺癌自动化定量诊断
- 批准号:
1557716 - 财政年份:2015
- 资助金额:
$ 42.07万 - 项目类别:
Standard Grant
相似海外基金
QuBBD: Collaborative Research: Quantifying Morphologic Phenotypes in Prostate Cancer - Developing Topological Descriptors for Machine Learning Algorithms
QuBBD:合作研究:量化前列腺癌的形态表型 - 开发机器学习算法的拓扑描述符
- 批准号:
1664848 - 财政年份:2017
- 资助金额:
$ 42.07万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Precision medicine and the management of infectious diseases
QuBBD:合作研究:精准医学和传染病管理
- 批准号:
1557742 - 财政年份:2015
- 资助金额:
$ 42.07万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Interactive Ensemble clustering for mixed data with application to mood disorders
QuBBD:协作研究:混合数据的交互式集成聚类及其在情绪障碍中的应用
- 批准号:
1557593 - 财政年份:2015
- 资助金额:
$ 42.07万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Interactive Ensemble clustering for mixed data with application to mood disorders
QuBBD:协作研究:混合数据的交互式集成聚类及其在情绪障碍中的应用
- 批准号:
1557642 - 财政年份:2015
- 资助金额:
$ 42.07万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Towards Automated Quantitative Prostate Cancer Diagnosis
QuBBD:合作研究:实现前列腺癌自动化定量诊断
- 批准号:
1557750 - 财政年份:2015
- 资助金额:
$ 42.07万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Personalized Predictive Neuromarkers for Stress-Related Health Risks
QuBBD:合作研究:压力相关健康风险的个性化预测神经标志物
- 批准号:
1557572 - 财政年份:2015
- 资助金额:
$ 42.07万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Advancing mHealth using Big Data Analytics: Statistical and Dynamical Systems Modeling of Real-Time Adaptive m-Intervention for Pain
QuBBD:协作研究:利用大数据分析推进移动医疗:疼痛实时自适应移动干预的统计和动态系统建模
- 批准号:
1557727 - 财政年份:2015
- 资助金额:
$ 42.07万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: SMART -- Spatial-Nonspatial Multidimensional Adaptive Radiotherapy Treatment
QuBBD:合作研究:SMART——空间-非空间多维适应性放射治疗
- 批准号:
1557559 - 财政年份:2015
- 资助金额:
$ 42.07万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: SMART -- Spatial-Nonspatial Multidimensional Adaptive Radiotherapy Treatment
QuBBD:合作研究:SMART——空间-非空间多维适应性放射治疗
- 批准号:
1557679 - 财政年份:2015
- 资助金额:
$ 42.07万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Advancing mHealth using Big Data Analytics: Statistical and Dynamical Systems Modeling of Real-Time Adaptive m-Intervention for Pain
QuBBD:协作研究:利用大数据分析推进移动医疗:疼痛实时自适应移动干预的统计和动态系统建模
- 批准号:
1557712 - 财政年份:2015
- 资助金额:
$ 42.07万 - 项目类别:
Standard Grant














{{item.name}}会员




