Choice, Learning, and Equilibrium
选择、学习和均衡
基本信息
- 批准号:1558205
- 负责人:
- 金额:$ 30.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-15 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award funds research in game theory that develops new ways to analyze how people interact with each other in strategic settings, especially when people learn over time from the results of their actions. The PI plans six different research projects using a variety of methods; formal theory, numerical simulation, and lab experiments. The first and last projects characterize conditions under which evolutionary learning processes mean that behavior adjusts relatively quickly to a long run outcome. The second will produce and analyze a model of individual choice that is probabilistic and includes the time it takes to make a choice. The third project will examine how people decide whether to cooperate in a repeated interaction setting where they only observe their partner's intention with noise, and so can not be certain whether a failure to cooperate was intentional, and in addition people can make (possibly false) claims about whether they intended to cooperate. The fourth project will develop a new definition of equilibrium behavior in strategic situations to see what sorts of incorrect beliefs about other people's play are robust to rational learning when different people in the same role (e.g. "auditors" or "consumers") do not directly observe what other people in their own role do. The fifth project considers how people learn from experience when their beginning understanding of the world is not quite correct (eg, when people work to learn from misspecified models). The research will benefit society by developing new theories and methods that can help us better predict how people will respond to changes in government policies and business practices.The research will help develop a better understanding of human behavior in individual decisions and in interactive contexts. The research questions include the following. How can the widely-used drift-diffusion model of stochastic choice be improved to better match the observed data on the relationship between choice probability and decision time, while maintain its link to Bayesian optimization? What happens when the model is generalized to allow time-varying costs or other signal structures? What happens when people are trying to learn their optimal actions, and are prepared to tradeoff a lower current expected payoff for a more informative signal, but misperceive the information value of their actions because their model is mis-specified? What are the implications of learning with recency bias- the tendency to rely mostly on recent observations- for which Nash equilibria will be observed? When do evolutionary or learning models converge quickly enough that that their asymptotic behavior in large populations is relevant, and how does this relate to the amount of randomness in choice? When will players truthfully report their intended play when their actions are observed with error, and when will others learn to trust these cheap-talk and possibly false reports? What are the long-run implications of rational learning when players know their opponents' payoff functions and also know the sorts of observations (e.g. bids, values, etc.) that other players see but not their actual data? The project will be strengthen ties between economists and psychologists interested in either recency bias or the drift-diffusion model, and between economists and computer scientists interested in learning in games. Taking a longer term view, the proposed research may enhance our understanding of how and when reciprocal altruism leads to cooperation; this is of fundamental importance in many branches of social science and is also a key issue in evolutionary biology. Likewise, better understanding the foundations of stochastic choice is a fundamental issue in cognitive psychology and computational neuroscience.
该奖项资助博弈论研究,该研究开发新方法来分析人们在战略环境中如何互动,特别是当人们随着时间的推移从其行为结果中学习时。 PI 使用多种方法计划了六个不同的研究项目;形式理论、数值模拟和实验室实验。第一个和最后一个项目描述了进化学习过程意味着行为相对快速地适应长期结果的条件。第二个将产生并分析个人选择的概率模型,并包括做出选择所需的时间。第三个项目将研究人们如何在重复的交互环境中决定是否合作,在这种环境中,他们只能通过噪音观察对方的意图,因此无法确定不合作是否是有意的,此外,人们可以对他们是否打算合作做出(可能是错误的)声明。第四个项目将制定战略情境中均衡行为的新定义,以了解当担任同一角色的不同人(例如“审计员”或“消费者”)不直接观察其他人在自己的角色中所做的事情时,什么样的关于其他人的游戏的错误信念对于理性学习来说是稳健的。第五个项目考虑当人们对世界的开始理解不太正确时(例如,当人们努力从错误指定的模型中学习时),他们如何从经验中学习。这项研究将通过开发新的理论和方法来造福社会,帮助我们更好地预测人们将如何应对政府政策和商业实践的变化。这项研究将有助于更好地理解个人决策和互动环境中的人类行为。 研究问题包括以下内容。如何改进广泛使用的随机选择漂移扩散模型,以更好地匹配选择概率和决策时间之间关系的观测数据,同时保持其与贝叶斯优化的联系?当模型被推广以允许时变成本或其他信号结构时会发生什么?当人们试图学习他们的最佳行动,并准备用较低的当前预期回报换取信息量更大的信号时,但由于模型指定错误而误解了他们行动的信息价值,会发生什么?带有新近度偏差的学习(主要依赖最近的观察的倾向)会观察到纳什均衡,这意味着什么?进化或学习模型何时收敛得足够快,以至于它们在大群体中的渐近行为是相关的?这与选择的随机性有何关系?当玩家的行为被观察到错误时,什么时候他们才能如实报告他们的预期玩法?其他人什么时候才能学会相信这些廉价言论和可能的虚假报告?当玩家知道对手的支付函数并且也知道其他玩家看到的观察类型(例如出价、价值等)而不是他们的实际数据时,理性学习的长期影响是什么?该项目将加强对近因偏差或漂移扩散模型感兴趣的经济学家和心理学家之间的联系,以及对游戏学习感兴趣的经济学家和计算机科学家之间的联系。从长远来看,拟议的研究可能会增强我们对互惠利他主义如何以及何时导致合作的理解;这在社会科学的许多分支中具有根本重要性,也是进化生物学的一个关键问题。同样,更好地理解随机选择的基础是认知心理学和计算神经科学的一个基本问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Drew Fudenberg其他文献
Location choice in two-sided markets with indivisible agents
- DOI:
10.1016/j.geb.2008.04.009 - 发表时间:
2010-05-01 - 期刊:
- 影响因子:
- 作者:
Robert M. Anderson;Glenn Ellison;Drew Fudenberg - 通讯作者:
Drew Fudenberg
Axiom of Monotonicity: An Experimental Test
单调性公理:实验测试
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Tridib Sharma;Radovan Vadovič;David Ahn;Andrew Caplin;Tim Ca;Jim Cox;Rachel Croson;M. Dufwenberg;Drew Fudenberg;Konrad Grabiszewski;Thomas Palfrey;Ariel Rubinstein;Tomas Sjstrm;Ricard Torres;J. Wooders - 通讯作者:
J. Wooders
Heterogeneous beliefs and local information in stochastic fictitious play
- DOI:
10.1016/j.geb.2008.11.014 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:
- 作者:
Drew Fudenberg;Satoru Takahashi - 通讯作者:
Satoru Takahashi
Repeated games with asynchronous monitoring of an imperfect signal
- DOI:
10.1016/j.geb.2010.08.005 - 发表时间:
2011-05-01 - 期刊:
- 影响因子:
- 作者:
Drew Fudenberg;Wojciech Olszewski - 通讯作者:
Wojciech Olszewski
Drew Fudenberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Drew Fudenberg', 18)}}的其他基金
Apprenticeship, Cooperation and Choice
学徒、合作与选择
- 批准号:
1951056 - 财政年份:2020
- 资助金额:
$ 30.24万 - 项目类别:
Standard Grant
Dynamic Choice in an Uncertain World
不确定世界中的动态选择
- 批准号:
1643517 - 财政年份:2016
- 资助金额:
$ 30.24万 - 项目类别:
Standard Grant
Dynamic Choice in an Uncertain World
不确定世界中的动态选择
- 批准号:
1258665 - 财政年份:2013
- 资助金额:
$ 30.24万 - 项目类别:
Standard Grant
The Economics of Self Control, and the Evolution of Equilibrium
自我控制的经济学和均衡的演变
- 批准号:
0646816 - 财政年份:2007
- 资助金额:
$ 30.24万 - 项目类别:
Continuing Grant
Learning in Games and in Market
在游戏中学习,在市场中学习
- 批准号:
9424013 - 财政年份:1995
- 资助金额:
$ 30.24万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
AF: Small: Equilibrium Computation and Multi-Agent Learning in High-Dimensional Games
AF:小:高维游戏中的平衡计算和多智能体学习
- 批准号:
2342642 - 财政年份:2024
- 资助金额:
$ 30.24万 - 项目类别:
Standard Grant
NSF-BSF: Learning the concept of Dynamic Equilibrium across disciplines with SystEms Augmented Mechanistic Representations
NSF-BSF:通过 SystEms 增强机械表示学习跨学科动态平衡的概念
- 批准号:
2240216 - 财政年份:2023
- 资助金额:
$ 30.24万 - 项目类别:
Standard Grant
Equilibrium with Randomized Strategies in Learning Theory and Mathematical Finance
学习理论和数学金融中随机策略的均衡
- 批准号:
2400447 - 财政年份:2023
- 资助金额:
$ 30.24万 - 项目类别:
Continuing Grant
Distributed Nash equilibrium-seeking Reinforcement Learning for N-player Games
N 人博弈的分布式纳什均衡强化学习
- 批准号:
558258-2020 - 财政年份:2022
- 资助金额:
$ 30.24万 - 项目类别:
Alliance Grants
Distributed Nash equilibrium-seeking Reinforcement Learning for N-player Games
N 人博弈的分布式纳什均衡强化学习
- 批准号:
558258-2020 - 财政年份:2021
- 资助金额:
$ 30.24万 - 项目类别:
Alliance Grants
Distributed Nash equilibrium-seeking Reinforcement Learning for N-player Games
N 人博弈的分布式纳什均衡强化学习
- 批准号:
558258-2020 - 财政年份:2020
- 资助金额:
$ 30.24万 - 项目类别:
Alliance Grants
Equilibrium with Randomized Strategies in Learning Theory and Mathematical Finance
学习理论和数学金融中随机策略的均衡
- 批准号:
2007826 - 财政年份:2020
- 资助金额:
$ 30.24万 - 项目类别:
Continuing Grant
Molecular dynamics study of non-equilibrium materials based on first-principles calculation and machine learning
基于第一性原理计算和机器学习的非平衡材料分子动力学研究
- 批准号:
20K14378 - 财政年份:2020
- 资助金额:
$ 30.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Exploiting non-equilibrium turbulence in design using DNS and Machine Learning
使用 DNS 和机器学习在设计中利用非平衡湍流
- 批准号:
2447952 - 财政年份:2020
- 资助金额:
$ 30.24万 - 项目类别:
Studentship
The applications of Machine Learning methods to classical and quantum problems in non-equilibrium
机器学习方法在非平衡经典和量子问题中的应用
- 批准号:
2275705 - 财政年份:2019
- 资助金额:
$ 30.24万 - 项目类别:
Studentship