Data Complexity and Spatial Scaling: Prediction Accuracy and Implications for Emerging Landscape Paradigms

数据复杂性和空间尺度:预测准确性和对新兴景观范式的影响

基本信息

  • 批准号:
    1561021
  • 负责人:
  • 金额:
    $ 12.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2019-11-30
  • 项目状态:
    已结题

项目摘要

This research will contribute new knowledge regarding the merger and aggregation of diverse geographic datasets and how their data quality loss can be minimized during these processes. As datasets are merged across varying spatial scales, statistical biases, commonly known as the Modifiable Areal Unit Problem (MAUP) occur and are impacted by the composition and configuration of the datasets. The investigator will study how these biases can be overcome in order to allow datasets to be accurately scaled to different resolutions. By developing methods that use measures of compositional and configurational heterogeneity, the researcher will provide new insights regarding how to assess the potential of a dataset to be accurately scaled to coarser and finer resolutions in order to foster integration. The investigator will raise awareness of accuracy issues surrounding appropriate and correct use of ecological, social, and geographical datasets for integrated analysis, and she will offer solutions to promote better interdisciplinary integration as well as methods for exposing young scientists to these issues through learning modules.This project will advance the spatial sciences by drawing on parallel theories in geography and landscape ecology. The research will seek to answer three core questions: (1) How do data complexity and spatial heterogeneity impact statistical biases associated with MAUP? (2) Can standards for data reduction/complexity improve prediction? (3) Do various landscape paradigms respond differently to changing heterogeneity? The investigator will use multiple methods, including innovations in surface paradigms in the field of landscape ecology, advances in remote sensing spectral unmixing, and scale-dependency of spatial pattern metrics to answer these questions. The research findings will result in identification of different forms of data reduction and complexity aggregation methods across multiple resolutions; development of a rapid assessment method for predicting downscaling accuracy; and establishment of a statistical basis for using the emerging continuous surface paradigm of landscape analyses. These outcomes have the potential to transform how scientists across environmental, social, and economic disciplines approach aggregation and scaling of various types of geospatial data.
这项研究将为不同地理数据集的合并和聚合以及如何在这些过程中将其数据质量损失降至最低提供新的知识。当数据集在不同的空间尺度上合并时,通常被称为可修改面积单位问题(MAUP)的统计偏差会发生,并受到数据集的组成和配置的影响。研究人员将研究如何克服这些偏差,以便使数据集能够准确地缩放到不同的分辨率。通过开发使用成分和构型异质性测量的方法,研究人员将提供关于如何评估数据集的潜力的新见解,该数据集将被精确缩放到更粗和更细的分辨率,以促进整合。研究人员将提高人们对恰当和正确使用生态、社会和地理数据集进行综合分析的准确性问题的认识,她将提供解决方案,以促进更好的跨学科整合,以及通过学习模块让年轻科学家接触这些问题的方法。该项目将通过借鉴地理学和景观生态学的平行理论来推动空间科学的发展。这项研究将试图回答三个核心问题:(1)数据复杂性和空间异质性如何影响与MAUP相关的统计偏差?(2)数据简化/复杂性标准能否改善预测?(3)不同的景观范式对异质性变化的反应是否不同?研究人员将使用多种方法来回答这些问题,包括景观生态领域地表范式的创新,遥感光谱分解的进展,以及空间格局度量的尺度相关性。研究结果将导致确定多种分辨率的不同形式的数据简化和复杂性聚合方法;开发一种预测缩小尺度精度的快速评估方法;并为使用新出现的连续地表景观分析范例建立统计基础。这些成果有可能改变环境、社会和经济学科的科学家如何处理各种类型的地理空间数据的聚合和缩放。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amy Frazier其他文献

Digital twins in urban informatics
城市信息学中的数字孪生
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Goodchild;Dylan Connor;A. Fotheringham;Amy Frazier;Peter Kedron;Wenwen Li;Daoqin Tong
  • 通讯作者:
    Daoqin Tong

Amy Frazier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amy Frazier', 18)}}的其他基金

Collaborative Research: BoCP-Implementation: BioFI- Biodiversity Forecasting Initiative to Understand Population, Community and Ecosystem Function Under Global Change
合作研究:BoCP-实施:BioFI-生物多样性预测倡议,以了解全球变化下的人口、社区和生态系统功能
  • 批准号:
    2416164
  • 财政年份:
    2023
  • 资助金额:
    $ 12.19万
  • 项目类别:
    Standard Grant
DISES: Decision Making for Land Use Planning under Future Climate Scenarios through Engaged Research via Co-Design
DISES:通过协同设计进行参与研究,在未来气候情景下制定土地利用规划决策
  • 批准号:
    2308277
  • 财政年份:
    2023
  • 资助金额:
    $ 12.19万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Creation and implementation of an early warning system for sand dune remobilization
博士论文研究:沙丘再动员预警系统的创建和实施
  • 批准号:
    2247351
  • 财政年份:
    2023
  • 资助金额:
    $ 12.19万
  • 项目类别:
    Standard Grant
DISES: Decision Making for Land Use Planning under Future Climate Scenarios through Engaged Research via Co-Design
DISES:通过联合设计参与研究,在未来气候情景下制定土地利用规划决策
  • 批准号:
    2401273
  • 财政年份:
    2023
  • 资助金额:
    $ 12.19万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: BioFI- Biodiversity Forecasting Initiative to Understand Population, Community and Ecosystem Function Under Global Change
合作研究:BoCP-实施:BioFI-生物多样性预测倡议,以了解全球变化下的人口、社区和生态系统功能
  • 批准号:
    2225079
  • 财政年份:
    2022
  • 资助金额:
    $ 12.19万
  • 项目类别:
    Standard Grant
Collaborative Research: Near Term Forecasts of Global Plant Distribution, Community Structure, and Ecosystem Function
合作研究:全球植物分布、群落结构和生态系统功能的近期预测
  • 批准号:
    1934759
  • 财政年份:
    2019
  • 资助金额:
    $ 12.19万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: Spatial Structure of Turbulent Flows in the Atmospheric Boundary Layer
博士论文研究:大气边界层湍流的空间结构
  • 批准号:
    1842715
  • 财政年份:
    2019
  • 资助金额:
    $ 12.19万
  • 项目类别:
    Standard Grant

相似海外基金

Spatial complexity of cardiac cell culture and spatial-temporal bioelectric activity: granularity and mechanical-electrical feedback.
心脏细胞培养的空间复杂性和时空生物电活动:粒度和机电反馈。
  • 批准号:
    RGPIN-2020-05758
  • 财政年份:
    2022
  • 资助金额:
    $ 12.19万
  • 项目类别:
    Discovery Grants Program - Individual
Developing fisheries models of intermediate complexity to address spatial dynamics and species interactions
开发中等复杂度的渔业模型以解决空间动态和物种相互作用
  • 批准号:
    RGPIN-2019-04045
  • 财政年份:
    2022
  • 资助金额:
    $ 12.19万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-omic genetic regulatory signatures underlying tissue complexity of diabetes in the pancreas at single-cell spatial resolution
单细胞空间分辨率下胰腺糖尿病组织复杂性的多组学遗传调控特征
  • 批准号:
    10684817
  • 财政年份:
    2022
  • 资助金额:
    $ 12.19万
  • 项目类别:
Developing fisheries models of intermediate complexity to address spatial dynamics and species interactions
开发中等复杂度的渔业模型以解决空间动态和物种相互作用
  • 批准号:
    RGPIN-2019-04045
  • 财政年份:
    2021
  • 资助金额:
    $ 12.19万
  • 项目类别:
    Discovery Grants Program - Individual
Spatial complexity of cardiac cell culture and spatial-temporal bioelectric activity: granularity and mechanical-electrical feedback.
心脏细胞培养的空间复杂性和时空生物电活动:粒度和机电反馈。
  • 批准号:
    RGPIN-2020-05758
  • 财政年份:
    2021
  • 资助金额:
    $ 12.19万
  • 项目类别:
    Discovery Grants Program - Individual
Spatial complexity of cardiac cell culture and spatial-temporal bioelectric activity: granularity and mechanical-electrical feedback.
心脏细胞培养的空间复杂性和时空生物电活动:粒度和机电反馈。
  • 批准号:
    RGPIN-2020-05758
  • 财政年份:
    2020
  • 资助金额:
    $ 12.19万
  • 项目类别:
    Discovery Grants Program - Individual
Disconnected: integrating spatial complexity in multiple stressor research
断开连接:在多重压力源研究中整合空间复杂性
  • 批准号:
    451144087
  • 财政年份:
    2020
  • 资助金额:
    $ 12.19万
  • 项目类别:
    Research Grants
Developing fisheries models of intermediate complexity to address spatial dynamics and species interactions
开发中等复杂度的渔业模型以解决空间动态和物种相互作用
  • 批准号:
    RGPIN-2019-04045
  • 财政年份:
    2020
  • 资助金额:
    $ 12.19万
  • 项目类别:
    Discovery Grants Program - Individual
Developing fisheries models of intermediate complexity to address spatial dynamics and species interactions
开发中等复杂度的渔业模型以解决空间动态和物种相互作用
  • 批准号:
    RGPIN-2019-04045
  • 财政年份:
    2019
  • 资助金额:
    $ 12.19万
  • 项目类别:
    Discovery Grants Program - Individual
Effects of body size and spatial complexity on pre-and postcopulatory success in Drosophil
身体大小和空间复杂性对果蝇交配前和交配后成功的影响
  • 批准号:
    527602-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 12.19万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了