CIF: Medium: Signal representation, sampling and recovery on graphs

CIF:中:图形上的信号表示、采样和恢复

基本信息

  • 批准号:
    1563918
  • 负责人:
  • 金额:
    $ 69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-15 至 2020-04-30
  • 项目状态:
    已结题

项目摘要

Datasets that are collected in physical and engineering applications, as well as social, biomolecular, commercial, security, and many other domains, are becoming larger and more complex. In many cases, such data is analyzed manually or using methods that extract only superficial information and can lead to subjective and non-reproducible conclusions. There is thus an urgent need for the development of methodologies that formalize analysis of complex data. Graphs provide a natural formalism to capture complex interactions that govern the structure of the data in many applications. However, a rigorous framework for signal and data processing on graphs has been lacking. This proposal aims to develop the fundamentals of signal representation, sampling and recovery on graphs. Signal and data processing has been the focus of the principal investigators? work for many years. In this project, the team will develop a mathematically rigorous framework for signal processing on graphs that offers a new paradigm for the analysis of high-dimensional data with complex, non-regular structure. By extending fundamental signal processing concepts such as filtering, Fourier and wavelet analysis to data residing on general graphs, the framework will offer principled solutions to a number of data analysis problems, such as data compression, recovery, localization, detection, and others. Specifically, the team will 1) develop efficient succinct representations for signals on graphs, 2) design efficient strategies that leverage the graph structure for sampling signals on graphs, and 3) develop near-optimal and computationally efficient estimators for recovering graph signals from samples.
在物理和工程应用以及社会、生物分子、商业、安全和许多其他领域中收集的数据集正变得越来越大和复杂。在许多情况下,这些数据是手动分析的,或者使用只提取表面信息的方法,可能导致主观和不可重现的结论。因此,迫切需要制定方法,正式分析复杂的数据。图提供了一种自然的形式主义来捕获在许多应用程序中控制数据结构的复杂交互。然而,一直缺乏一个严格的框架,信号和数据处理的图形。该建议旨在发展信号表示,采样和恢复的图形的基础。信号和数据处理一直是主要研究人员的重点?工作多年。在这个项目中,该团队将开发一个数学上严格的框架,用于图形信号处理,为分析具有复杂,非规则结构的高维数据提供了一个新的范例。通过将基本的信号处理概念,如滤波、傅立叶和小波分析扩展到一般图上的数据,该框架将为许多数据分析问题提供原则性的解决方案,如数据压缩、恢复、定位、检测等。具体来说,该团队将1)为图上的信号开发高效简洁的表示,2)设计有效的策略,利用图结构对图上的信号进行采样,3)开发接近最佳和计算效率高的估计器,用于从样本中恢复图信号。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jose Moura其他文献

Decentralized Control Orchestration for Dynamic Edge Programmable Systems

Jose Moura的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jose Moura', 18)}}的其他基金

CIF: Small: Graph Structure Discovery of Networked Dynamical Systems
CIF:小:网络动力系统的图结构发现
  • 批准号:
    2327905
  • 财政年份:
    2024
  • 资助金额:
    $ 69万
  • 项目类别:
    Standard Grant
CIF: Medium: Data Science: Analytics for Unstructured and Distributed Data
CIF:媒介:数据科学:非结构化和分布式数据分析
  • 批准号:
    1513936
  • 财政年份:
    2015
  • 资助金额:
    $ 69万
  • 项目类别:
    Continuing Grant
CIF: Small: Gossiping, Intermittency, and Kalman Filtering
CIF:小:八卦、间歇性和卡尔曼滤波
  • 批准号:
    1018509
  • 财政年份:
    2010
  • 资助金额:
    $ 69万
  • 项目类别:
    Standard Grant
CIF: Large: Collaborative Research: Cooperation and Learning over Cognitive Networks
CIF:大型:协作研究:认知网络上的合作与学习
  • 批准号:
    1011903
  • 财政年份:
    2010
  • 资助金额:
    $ 69万
  • 项目类别:
    Continuing Grant
ITR/NGS-Intelligent HW/SW Compilers for DSP Applications
ITR/NGS-用于 DSP 应用的智能硬件/软件编译器
  • 批准号:
    0325687
  • 财政年份:
    2003
  • 资助金额:
    $ 69万
  • 项目类别:
    Continuing Grant
Group Representations and Automatic Generation of Fast Algorithms for Discrete Signal Transforms
离散信号变换的群表示和快速算法的自动生成
  • 批准号:
    9988296
  • 财政年份:
    2000
  • 资助金额:
    $ 69万
  • 项目类别:
    Continuing Grant
(CISE) Research Instrumentation
(CISE) 研究仪器
  • 批准号:
    8820575
  • 财政年份:
    1989
  • 资助金额:
    $ 69万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: RI: Medium: From Acoustic Signal to Morphosyntactic Analysis in One End-to-End Neural System
合作研究:RI:媒介:从声学信号到端到端神经系统中的形态句法分析
  • 批准号:
    2211952
  • 财政年份:
    2022
  • 资助金额:
    $ 69万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: From Acoustic Signal to Morphosyntactic Analysis in One End-to-End Neural System
合作研究:RI:媒介:从声学信号到端到端神经系统中的形态句法分析
  • 批准号:
    2211951
  • 财政年份:
    2022
  • 资助金额:
    $ 69万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Nonconvex Optimization for High-Dimensional Signal Estimation: Theory and Fast Algorithms
CIF:中:协作研究:高维信号估计的非凸优化:理论和快速算法
  • 批准号:
    1806154
  • 财政年份:
    2018
  • 资助金额:
    $ 69万
  • 项目类别:
    Continuing Grant
CIF: Medium: Collaborative Research: Nonconvex Optimization for High-Dimensional Signal Estimation: Theory and Fast Algorithms
CIF:中:协作研究:高维信号估计的非凸优化:理论和快速算法
  • 批准号:
    1761506
  • 财政年份:
    2017
  • 资助金额:
    $ 69万
  • 项目类别:
    Continuing Grant
CIF: Medium: Collaborative Research: Nonconvex Optimization for High-Dimensional Signal Estimation: Theory and Fast Algorithms
CIF:中:协作研究:高维信号估计的非凸优化:理论和快速算法
  • 批准号:
    1704169
  • 财政年份:
    2017
  • 资助金额:
    $ 69万
  • 项目类别:
    Continuing Grant
CIF: Medium: Collaborative Research: Nonconvex Optimization for High-Dimensional Signal Estimation: Theory and Fast Algorithms
CIF:中:协作研究:高维信号估计的非凸优化:理论和快速算法
  • 批准号:
    1704245
  • 财政年份:
    2017
  • 资助金额:
    $ 69万
  • 项目类别:
    Continuing Grant
CIF: Medium: Collaborative Research: Nonconvex Optimization for High-Dimensional Signal Estimation: Theory and Fast Algorithms
CIF:中:协作研究:高维信号估计的非凸优化:理论和快速算法
  • 批准号:
    1704828
  • 财政年份:
    2017
  • 资助金额:
    $ 69万
  • 项目类别:
    Continuing Grant
SHF: Medium: Booleanized Verification of Analog/Mixed Signal Systems
SHF:中:模拟/混合信号系统的布尔化验证
  • 批准号:
    1563812
  • 财政年份:
    2016
  • 资助金额:
    $ 69万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Quickest Change Detection Techniques with Signal Processing Applications
CIF:媒介:协作研究:信号处理应用的最快变化检测技术
  • 批准号:
    1513373
  • 财政年份:
    2015
  • 资助金额:
    $ 69万
  • 项目类别:
    Continuing Grant
CIF: Medium: Fundamental Properties of Millimeter Wave Networks: Signal, Interference, and Connectivity
CIF:介质:毫米波网络的基本属性:信号、干扰和连接
  • 批准号:
    1514275
  • 财政年份:
    2015
  • 资助金额:
    $ 69万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了