Quantitative Characterization of 3D Vector Fields in Advanced Materials
先进材料中 3D 矢量场的定量表征
基本信息
- 批准号:1564550
- 负责人:
- 金额:$ 45.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical DescriptionMagnets and magnetic materials play an important role in today's technological society. Many commercial products, e.g., modern cars, have hundreds of both permanent magnets and electromagnets in them. In the micro-electronic world, magnetic components appear at all length scales, from centimeter-sized magnets in power transformers to tiny magnetic components in computer hard drives. To describe the central goal of this research project, it is useful to think about how magnets are often introduced in a high school physics class: a magnet is placed on a level surface, and a sheet of paper is placed on top. Then, fine iron filings are poured on top of the sheet and they arrange themselves along the magnetic field lines, thus making the magnetic field visible. In the proposed project, The PI intends to perform a similar experiment to make magnetic field lines visible in the space surrounding nano-scale magnetic objects. This requires (1) the use of an electron microscope to deliver the high magnification needed to visualize nano-scale objects; and (2) the development of mathematical models to interpret the images observed in the microscope, and turn them into a three-dimensional representation of the magnetic field surrounding the nano-sale objects. These models will operate in a way similar to the use of MRI scanners in the medical world; a series of microscope images is converted into a three-dimensional visualization of the magnetic field. This, in turn, allows us to study how these nano-scale magnetic objects function and how they interact with each other. The ability to quantify how things work at the nano-scale is crucial to many aspects of our technological society and may lead, in the long run, to improved microelectronic devices and magnetic recording techniques. This project addresses some of the fundamental scientific questions that need to be answered in order to design and fabricate the next generation of nano-scale devices. The project will advance the field of nano-magnetics, and will help train both undergraduate and graduate students in the area of magnetism.Part 2: Technical DescriptionThe proposed research program will create novel approaches to the reconstruction of 3D vector fields in modern multi-phase engineering materials. Generalized forward projectors capable of accurately simulating defect contrast as well as Lorentz images for tomographic acquisition modes will be created. These projectors will be integrated with tomographic reconstruction algorithms that are model-based, rather than the conventional filtered back-projection and simultaneous iterative reconstruction technique approaches currently in use. Our proposed model-based iterative reconstruction (MBIR) approach will be capable of incorporating prior physics-based models to provide reconstruction constraints and realistic boundary conditions. The algorithms will be validated using dedicated test samples, and applied to 3D reconstructions of the magnetization in permalloy-based samples, and defect displacement fields in Mo wires and multi-phase Ni-based superalloys. Portions of this work will be carried out in collaboration with colleagues at the Ohio State University, Purdue University, and the Argonne National Laboratory.The MBIR approach will guide the creation of a novel, efficient, modular, accurate, iterative tomographic reconstruction technique, which can be used for the reconstruction of 3D vector fields, in particular magnetization and defect displacement fields. Defect contrast imaging has been used for many decades in the materials community, but thus far, despite the importance of defects in the overall behavior of an engineering material, there have not been any efforts to determine displacement vector fields at the level of individual defects or defect clusters. The proposed work will lay the foundation for the eventual routine determination of 3D vector fields by TEM techniques. The proposed research has the potential to impact the broad area of quantitative 3D materials characterization, and will produce a clearly defined experimental protocol for the efficient collection of data for 3D vector field reconstructions. All experimental protocols and numerical algorithms will be made available to the broader materials community in the form of publications and open source code. The educational/outreach component of the proposed program has the potential to impact middle and high school science education in several schools near Pittsburgh. The TACTILS program (Teaching Advanced Characterization Tools In Local Schools) provides access to portable scanning electron microscopes for science teachers so that they can employ these instruments in their class rooms. In addition, the PI will work with the local Carnegie Museum of Natural History's Hillman Hall of Minerals and Gems to provide a number of undergraduate materials students with opportunities to carry out research in the area of structural and chemical mineral identification.
磁铁和磁性材料在当今的科技社会中扮演着重要的角色。许多商业产品,例如现代汽车,都有数百个永磁体和电磁铁。在微电子领域,磁性元件出现在各种长度尺度上,从电力变压器中厘米大小的磁铁到计算机硬盘驱动器中的微小磁性元件。为了描述这个研究项目的中心目标,想想在高中物理课上磁铁是如何被引入的是很有用的:一块磁铁放在一个水平的表面上,在上面放一张纸。然后,将细铁屑倒在薄片上,它们沿着磁力线排列,从而使磁场可见。在提议的项目中,PI打算进行类似的实验,使磁场线在纳米级磁性物体周围的空间中可见。这需要(1)使用电子显微镜来提供可视化纳米级物体所需的高放大倍率;(2)建立数学模型来解释显微镜下观察到的图像,并将其转化为纳米物体周围磁场的三维表示。这些模型的运作方式类似于医学领域的核磁共振扫描仪;一系列显微镜图像被转换成磁场的三维可视化。反过来,这使我们能够研究这些纳米级磁性物体的功能以及它们如何相互作用。在纳米尺度上量化事物如何工作的能力对我们技术社会的许多方面都至关重要,从长远来看,可能会导致微电子设备和磁记录技术的改进。为了设计和制造下一代纳米级器件,该项目解决了一些需要回答的基本科学问题。该项目将推动纳米磁学领域的发展,并将有助于培养磁学领域的本科生和研究生。第2部分:技术描述提出的研究计划将为现代多相工程材料中的三维矢量场重建创造新方法。将创建能够准确模拟缺陷对比度以及用于层析采集模式的洛伦兹图像的广义前向投影仪。这些投影仪将与基于模型的层析成像重建算法集成,而不是目前使用的传统滤波反投影和同步迭代重建技术方法。我们提出的基于模型的迭代重建(MBIR)方法将能够结合先前的基于物理的模型来提供重建约束和现实的边界条件。这些算法将通过专门的测试样品进行验证,并应用于坡莫合金样品的磁化强度的3D重建,以及Mo线和多相ni基高温合金的缺陷位移场。这项工作的一部分将与俄亥俄州立大学、普渡大学和阿贡国家实验室的同事合作进行。MBIR方法将指导创建一种新颖、高效、模块化、精确、迭代的层析成像重建技术,该技术可用于重建3D矢量场,特别是磁化和缺陷位移场。缺陷对比成像已经在材料界使用了几十年,但是到目前为止,尽管缺陷在工程材料的整体行为中很重要,但还没有任何努力在单个缺陷或缺陷簇的水平上确定位移向量场。所提出的工作将为TEM技术最终常规确定三维矢量场奠定基础。拟议的研究有可能影响定量3D材料表征的广泛领域,并将为3D矢量场重建的有效数据收集提供明确定义的实验方案。所有实验协议和数值算法将以出版物和开源代码的形式提供给更广泛的材料界。拟议项目的教育/推广部分有可能影响匹兹堡附近几所学校的初中和高中科学教育。在当地学校教授高级表征工具的项目为科学教师提供了便携式扫描电子显微镜,使他们能够在课堂上使用这些仪器。此外,PI将与当地卡内基自然历史博物馆的希尔曼矿物和宝石厅合作,为一些本科材料学生提供在结构和化学矿物鉴定领域开展研究的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marc De Graef其他文献
Applications of the Clifford torus texture representation to disorientations in single and multi-phase materials
克利福德环面纹理表示在单相和多相材料中的取向问题中的应用
- DOI:
10.1016/j.matchar.2025.114982 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:5.500
- 作者:
Clément Lafond;Marc De Graef - 通讯作者:
Marc De Graef
Identification, classification and characterisation of hydrides in Zr alloys
Zr合金中氢化物的识别、分类和表征
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:6
- 作者:
Mia Maric;R. Thomas;Alec Davis;D. Lunt;Jack Donoghue;Ali Gholinia;Marc De Graef;T. Ungár;Pierre Barberis;F. Bourlier;P. Frankel;P. Shanthraj;Michael Preuss - 通讯作者:
Michael Preuss
Symposium on three dimensional materials science foreword
- DOI:
10.1007/s11661-005-0024-4 - 发表时间:
2005-07-01 - 期刊:
- 影响因子:2.500
- 作者:
Marc De Graef;Jeff Simmons - 通讯作者:
Jeff Simmons
Direct electron detection for EBSD of low symmetry & beam sensitive ceramics
- DOI:
10.1016/j.ultramic.2024.114079 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Nicolò M. Della Ventura;Andrew R. Ericks;McLean P. Echlin;Kalani Moore;Tresa M. Pollock;Matthew R. Begley;Frank W. Zok;Marc De Graef;Daniel S. Gianola - 通讯作者:
Daniel S. Gianola
Marc De Graef的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marc De Graef', 18)}}的其他基金
Low voltage electron back-scatter diffraction: enabling high resolution mapping of heavily deformed materials
低压电子背散射衍射:实现严重变形材料的高分辨率绘图
- 批准号:
2203378 - 财政年份:2022
- 资助金额:
$ 45.58万 - 项目类别:
Continuing Grant
Forward Model Based Strain Analysis in Highly Deformed Metallic Systems Using Electron Back-Scatter Diffraction Patterns
使用电子背散射衍射图案对高度变形金属系统进行基于正演模型的应变分析
- 批准号:
1904629 - 财政年份:2019
- 资助金额:
$ 45.58万 - 项目类别:
Continuing Grant
Domain Walls in Ferromagnetic Shape Memory Alloys
铁磁形状记忆合金中的畴壁
- 批准号:
1306296 - 财政年份:2013
- 资助金额:
$ 45.58万 - 项目类别:
Continuing Grant
Quantitative Aberration-Corrected Observations of Magnetic Domain Walls in Multi-Ferroic Materials
多铁材料中磁畴壁的定量像差校正观测
- 批准号:
1005330 - 财政年份:2010
- 资助金额:
$ 45.58万 - 项目类别:
Continuing Grant
SGER: Automated Reflection Laue and Serial Sectioning Characterization of Magnetic and Martensitic Materials
SGER:磁性和马氏体材料的自动反射劳厄和连续切片表征
- 批准号:
0809048 - 财政年份:2008
- 资助金额:
$ 45.58万 - 项目类别:
Continuing Grant
MRI: Acquisition of an Imaging Spherical Aberration Corrector and a Lorentz Lens for Magnetic Materials Characterization
MRI:获取成像球面像差校正器和洛伦兹透镜用于磁性材料表征
- 批准号:
0821136 - 财政年份:2008
- 资助金额:
$ 45.58万 - 项目类别:
Standard Grant
Domain Walls and Twin Boundaries in Ferromagnetic Shape Memory Alloys
铁磁形状记忆合金中的畴壁和孪晶界
- 批准号:
0404836 - 财政年份:2004
- 资助金额:
$ 45.58万 - 项目类别:
Continuing Grant
Implementation of a New Undergraduate Curriculum in Materials Science and Engineering at Carnegie Mellon University
卡内基梅隆大学材料科学与工程本科新课程实施
- 批准号:
0342200 - 财政年份:2004
- 资助金额:
$ 45.58万 - 项目类别:
Standard Grant
Microstructure and Properties of the Ferromagnetic Shape Memory Alloy Ni2MnGa
铁磁形状记忆合金Ni2MnGa的显微组织与性能
- 批准号:
0095586 - 财政年份:2001
- 资助金额:
$ 45.58万 - 项目类别:
Continuing Grant
Study of the Influence of Hydrogen on the Microstructure and Properties of Intermetallic Alloys
氢对金属间合金组织与性能影响的研究
- 批准号:
9501017 - 财政年份:1995
- 资助金额:
$ 45.58万 - 项目类别:
Continuing Grant
相似海外基金
in-situ 3D transmission electron microscopy toward quantitative deformation structure characterization
原位 3D 透射电子显微镜定量变形结构表征
- 批准号:
19H02029 - 财政年份:2019
- 资助金额:
$ 45.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
NSF/FDA Scholar In Residence: Quantitative Characterization of Near-infrared Fluorescence Molecular Imaging Systems: 3D-printed Biomimetic Phantoms and In vivo Validation
NSF/FDA 常驻学者:近红外荧光分子成像系统的定量表征:3D 打印的仿生体模和体内验证
- 批准号:
1641077 - 财政年份:2017
- 资助金额:
$ 45.58万 - 项目类别:
Standard Grant
3D OCT Angiography for quantitative characterization of diabetic retinopathy
3D OCT 血管造影定量表征糖尿病视网膜病变
- 批准号:
9299870 - 财政年份:2017
- 资助金额:
$ 45.58万 - 项目类别:
Quantitative 3D digital pathology image analysis for tissue characterization on prostate cancer imaging
用于前列腺癌成像组织表征的定量 3D 数字病理图像分析
- 批准号:
418740-2012 - 财政年份:2017
- 资助金额:
$ 45.58万 - 项目类别:
Discovery Grants Program - Individual
Quantitative 3D digital pathology image analysis for tissue characterization on prostate cancer imaging
用于前列腺癌成像组织表征的定量 3D 数字病理图像分析
- 批准号:
418740-2012 - 财政年份:2016
- 资助金额:
$ 45.58万 - 项目类别:
Discovery Grants Program - Individual
Quantitative 3D digital pathology image analysis for tissue characterization on prostate cancer imaging
用于前列腺癌成像组织表征的定量 3D 数字病理图像分析
- 批准号:
418740-2012 - 财政年份:2015
- 资助金额:
$ 45.58万 - 项目类别:
Discovery Grants Program - Individual
Quantitative 3D digital pathology image analysis for tissue characterization on prostate cancer imaging
用于前列腺癌成像组织表征的定量 3D 数字病理图像分析
- 批准号:
418740-2012 - 财政年份:2014
- 资助金额:
$ 45.58万 - 项目类别:
Discovery Grants Program - Individual
Quantitative 3D digital pathology image analysis for tissue characterization on prostate cancer imaging
用于前列腺癌成像组织表征的定量 3D 数字病理图像分析
- 批准号:
418740-2012 - 财政年份:2013
- 资助金额:
$ 45.58万 - 项目类别:
Discovery Grants Program - Individual
Quantitative 3D digital pathology image analysis for tissue characterization on prostate cancer imaging
用于前列腺癌成像组织表征的定量 3D 数字病理图像分析
- 批准号:
418740-2012 - 财政年份:2012
- 资助金额:
$ 45.58万 - 项目类别:
Discovery Grants Program - Individual
3D image analysis modeling and quantitative characterization of fuel cell microstructures
燃料电池微观结构的 3D 图像分析建模和定量表征
- 批准号:
312297-2005 - 财政年份:2009
- 资助金额:
$ 45.58万 - 项目类别:
Discovery Grants Program - Individual