MRI: Acquisition of an Imaging Spherical Aberration Corrector and a Lorentz Lens for Magnetic Materials Characterization

MRI:获取成像球面像差校正器和洛伦兹透镜用于磁性材料表征

基本信息

  • 批准号:
    0821136
  • 负责人:
  • 金额:
    $ 62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

Technical Abstract:In Lorentz transmission electron microscopy, a high-energy electron beam is directed through a magnetic thin foil and the deflections caused by the Lorentz force are analyzed by means of through-focus imaging. The attainable spatial resolution of uncorrected Lorentz instruments is in the range 10-15 nm, due to the large spherical aberration coefficient of the low field Lorentz pole piece. In addition, delocalization effects cause significant image blurring, making quantitative measurements very challenging. Recent developments in aberration correction make it possible to correct the spherical aberration of a Lorentz lens to a value which is sufficiently small to suppress delocalization effects, thereby opening up a completely new observation window on the magnetic nanostructure of materials. In this MRI proposal, we request funding for the acquisition of an imaging spherical aberration corrector and a Lorentz lens for magnetic materials characterization; these components will be added to an existing FEI Titan 80-300 TEM. The corrector and Lorentz lens are crucial to meet the increasing demands of magnetic materials characterization. In state-of-the-art magnetic recording media, for instance, the size of the written bits is comparable to the magnetic resolution of uncorrected Lorentz microscopes, so that it is nearly impossible to obtain high resolution Lorentz images of the magnetic microstructure. The combination of a Lorentz lens and a dedicated corrector will bring the spatial resolution in Lorentz mode down to less than 1 nm, with negligible delocalization effects, thereby enabling for the first time the direct quantitative study of magnetic features at a length scale of around 1 nm. We anticipate that a large number of new scientific results will be obtained on material systems for which these observations were previously impossible. The availability of a corrector and Lorentz lens will impact a large number of research groups within CMU, as well as collaborations with local industry and several national laboratories. Through integration of the corrector training sessions with an existing course on TEM, we will strengthen the education of local and remote students in advanced TEM.Non-Technical Abstract:Since their invention in the 1930s, transmission electron microscopes have suffered from a lens aberration, similar to the aberration suffered by the Hubble space telescope when it was first launched; the images acquired in these instruments are blurred instead of sharp, so that it is difficult to extract reliable information about the objects being studied. The Hubble telescope was repaired by the addition of a corrector lens (essentially a pair of corrective glasses), and, recently, such glasses have also become available for electron microscopes. In this MRI proposal, we request funding for the acquisition of corrector optics for an existing electron microscope located at Carnegie Mellon University, along with a special lens that will enable us to study magnetic materials with very high spatial resolution. Magnetic materials are important in many aspects of today's society, in particular in data storage on magnetic hard drives. The individual data bits on a hard drive are so small, that current electron microscopes cannot obtain sharp images of them. Using the corrector, however, it will become possible to study these bits with an unprecedented clarity; these observations, in turn, will result in further improvements in the density of information that can be stored on a hard disk, and in the reliability of long-term storage. The corrective optics will allow for the generation of a large number of new scientific results on materials for which these observations are currently impossible. The availability of the corrective optics will impact a large number of research groups within CMU, as well as collaborations with local industry and several national laboratories. Through integration of the corrector training sessions with an existing course on electron microscopy, we will strengthen the education of local and remote students in advanced materials characterization methods.
技术摘要:在洛仑兹透射电子显微镜中,高能电子束被引导通过磁性薄箔,并且通过离焦成像来分析由洛仑兹力引起的偏转。 由于低场洛伦兹极片的大球差系数,未校正的洛伦兹仪器可达到的空间分辨率在10-15 nm的范围内。 此外,离域效应导致显著的图像模糊,使得定量测量非常具有挑战性。 像差校正的最新发展使得可以将洛伦兹透镜的球面像差校正到足够小以抑制离域效应的值,从而打开了对材料的磁性纳米结构的全新观察窗口。 在该MRI提案中,我们申请资金用于购买成像球面像差校正器和用于磁性材料表征的洛伦兹透镜;这些组件将添加到现有的FEI Titan 80-300 TEM中。校正器和洛伦兹透镜是满足磁性材料表征日益增长的需求的关键。 例如,在最先进的磁记录介质中,写入位的大小与未校正的洛伦兹显微镜的磁分辨率相当,因此几乎不可能获得磁微结构的高分辨率洛伦兹图像。 洛伦兹透镜和专用校正器的组合将使洛伦兹模式的空间分辨率降低到小于1 nm,离域效应可以忽略不计,从而首次能够在1 nm左右的长度尺度上直接定量研究磁性特征。 我们预计,将获得大量的新的科学成果的材料系统,这些观察是以前不可能的。 校正器和洛伦兹透镜的可用性将影响CMU内的大量研究小组,以及与当地工业和几个国家实验室的合作。 通过将校正器培训课程与现有的TEM课程相结合,我们将加强对当地和偏远地区学生的高级TEM教育。非技术摘要:自20世纪30年代发明透射电子显微镜以来,透射电子显微镜一直受到透镜像差的影响,类似于哈勃太空望远镜首次发射时所受到的像差。在这些仪器中获得的图像是模糊的而不是清晰的,因此难以提取关于被研究对象的可靠信息。 哈勃望远镜是通过增加一个校正透镜(本质上是一副矫正眼镜)来修复的,最近,这种眼镜也可以用于电子显微镜。 在这项磁共振成像提案中,我们要求提供资金,用于为卡内基梅隆大学现有的电子显微镜购买校正光学器件,沿着特殊的透镜,使我们能够以非常高的空间分辨率研究磁性材料。 磁性材料在当今社会的许多方面都很重要,特别是在磁性硬盘驱动器上的数据存储方面。 硬盘上的单个数据位非常小,以至于目前的电子显微镜无法获得清晰的图像。 然而,使用校正器,将有可能以前所未有的清晰度研究这些比特;这些观察结果反过来将进一步提高硬盘上存储的信息密度和长期存储的可靠性。 校正光学将允许产生大量的新的科学成果的材料,这些观察是目前不可能的。 矫正光学器件的可用性将影响CMU内的大量研究小组,以及与当地工业和几个国家实验室的合作。 通过整合校正培训课程与现有的电子显微镜课程,我们将加强对当地和远程学生的先进材料表征方法的教育。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marc De Graef其他文献

Applications of the Clifford torus texture representation to disorientations in single and multi-phase materials
克利福德环面纹理表示在单相和多相材料中的取向问题中的应用
  • DOI:
    10.1016/j.matchar.2025.114982
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    5.500
  • 作者:
    Clément Lafond;Marc De Graef
  • 通讯作者:
    Marc De Graef
Identification, classification and characterisation of hydrides in Zr alloys
Zr合金中氢化物的识别、分类和表征
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Mia Maric;R. Thomas;Alec Davis;D. Lunt;Jack Donoghue;Ali Gholinia;Marc De Graef;T. Ungár;Pierre Barberis;F. Bourlier;P. Frankel;P. Shanthraj;Michael Preuss
  • 通讯作者:
    Michael Preuss
Symposium on three dimensional materials science foreword
Direct electron detection for EBSD of low symmetry & beam sensitive ceramics
  • DOI:
    10.1016/j.ultramic.2024.114079
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nicolò M. Della Ventura;Andrew R. Ericks;McLean P. Echlin;Kalani Moore;Tresa M. Pollock;Matthew R. Begley;Frank W. Zok;Marc De Graef;Daniel S. Gianola
  • 通讯作者:
    Daniel S. Gianola

Marc De Graef的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marc De Graef', 18)}}的其他基金

Low voltage electron back-scatter diffraction: enabling high resolution mapping of heavily deformed materials
低压电子背散射衍射:实现严重变形材料的高分辨率绘图
  • 批准号:
    2203378
  • 财政年份:
    2022
  • 资助金额:
    $ 62万
  • 项目类别:
    Continuing Grant
Forward Model Based Strain Analysis in Highly Deformed Metallic Systems Using Electron Back-Scatter Diffraction Patterns
使用电子背散射衍射图案对高度变形金属系统进行基于正演模型的应变分析
  • 批准号:
    1904629
  • 财政年份:
    2019
  • 资助金额:
    $ 62万
  • 项目类别:
    Continuing Grant
Quantitative Characterization of 3D Vector Fields in Advanced Materials
先进材料中 3D 矢量场的定量表征
  • 批准号:
    1564550
  • 财政年份:
    2016
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Domain Walls in Ferromagnetic Shape Memory Alloys
铁磁形状记忆合金中的畴壁
  • 批准号:
    1306296
  • 财政年份:
    2013
  • 资助金额:
    $ 62万
  • 项目类别:
    Continuing Grant
Quantitative Aberration-Corrected Observations of Magnetic Domain Walls in Multi-Ferroic Materials
多铁材料中磁畴壁的定量像差校正观测
  • 批准号:
    1005330
  • 财政年份:
    2010
  • 资助金额:
    $ 62万
  • 项目类别:
    Continuing Grant
SGER: Automated Reflection Laue and Serial Sectioning Characterization of Magnetic and Martensitic Materials
SGER:磁性和马氏体材料的自动反射劳厄和连续切片表征
  • 批准号:
    0809048
  • 财政年份:
    2008
  • 资助金额:
    $ 62万
  • 项目类别:
    Continuing Grant
Domain Walls and Twin Boundaries in Ferromagnetic Shape Memory Alloys
铁磁形状记忆合金中的畴壁和孪晶界
  • 批准号:
    0404836
  • 财政年份:
    2004
  • 资助金额:
    $ 62万
  • 项目类别:
    Continuing Grant
Implementation of a New Undergraduate Curriculum in Materials Science and Engineering at Carnegie Mellon University
卡内基梅隆大学材料科学与工程本科新课程实施
  • 批准号:
    0342200
  • 财政年份:
    2004
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Microstructure and Properties of the Ferromagnetic Shape Memory Alloy Ni2MnGa
铁磁形状记忆合金Ni2MnGa的显微组织与性能
  • 批准号:
    0095586
  • 财政年份:
    2001
  • 资助金额:
    $ 62万
  • 项目类别:
    Continuing Grant
Study of the Influence of Hydrogen on the Microstructure and Properties of Intermetallic Alloys
氢对金属间合金组织与性能影响的研究
  • 批准号:
    9501017
  • 财政年份:
    1995
  • 资助金额:
    $ 62万
  • 项目类别:
    Continuing Grant

相似海外基金

Equipment: MRI: Track 2 Acquisition of a Novel Performance-Driven 3D Imaging System for Extremely Noisy Objects (NPIX)
设备: MRI:第 2 道采购新型性能驱动的 3D 成像系统,用于极噪物体 (NPIX)
  • 批准号:
    2319708
  • 财政年份:
    2023
  • 资助金额:
    $ 62万
  • 项目类别:
    Continuing Grant
NSF MRI Track 2: Acquisition of an Electron Beam Lithography and Imaging System for Research, Education, and Training
NSF MRI 轨道 2:采购用于研究、教育和培训的电子束光刻和成像系统
  • 批准号:
    2320098
  • 财政年份:
    2023
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
MRI: Track 1 Acquisition of High-Resolution Multichannel Electrical Resistivity Imaging System for Sub-Soil Characterization
MRI:第 1 轨采集高分辨率多通道电阻率成像系统,用于地下土壤表征
  • 批准号:
    2320057
  • 财政年份:
    2023
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1 Acquisition of a Transmission Electron Microscope with Cryogenic Imaging Capabilities for Research and Education
设备: MRI:轨道 1 采购具有低温成像功能的透射电子显微镜用于研究和教育
  • 批准号:
    2320081
  • 财政年份:
    2023
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
MRI: Track 1: Acquisition of Agilent 8700 Laser Direct Infrared (LDIR) Chemical Imaging System
MRI:轨道 1:采购 Agilent 8700 激光直接红外 (LDIR) 化学成像系统
  • 批准号:
    2320748
  • 财政年份:
    2023
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Direct Detection Electron Camera for an Existing Scanning Transmission Electron Microscope for Low-Dose and Phase-Sensitive Imaging of Materials
MRI:为现有扫描透射电子显微镜购买直接检测电子相机,用于材料的低剂量和相敏成像
  • 批准号:
    2216710
  • 财政年份:
    2022
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a MALDI Tandem Mass Spectrometer (MALDI MS/MS) for Imaging, Biological Research and Chemical Materials Characterization
MRI:购买 MALDI 串联质谱仪 (MALDI MS/MS) 用于成像、生物研究和化学材料表征
  • 批准号:
    2215823
  • 财政年份:
    2022
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Photo-Induced Force Microscope for High Resolution Nanoscale Spectroscopic Imaging and Analysis
MRI:获取光诱导力显微镜以进行高分辨率纳米级光谱成像和分析
  • 批准号:
    2215905
  • 财政年份:
    2022
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Research Infrastructure: MRI: Acquisition of a Biomolecular Imaging System for Research and Education
研究基础设施:MRI:获取用于研究和教育的生物分子成像系统
  • 批准号:
    2214573
  • 财政年份:
    2022
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a High-Speed Biplanar Fluoroscopy System for Non-Invasive Quantitative Imaging of Human Movement
MRI:获取高速双平面透视系统,用于人体运动的非侵入性定量成像
  • 批准号:
    2216029
  • 财政年份:
    2022
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了