EAGER: A Measure Theory Semantics of Probability Theory

EAGER:概率论的测度理论语义

基本信息

  • 批准号:
    1565807
  • 负责人:
  • 金额:
    $ 0.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2016-09-30
  • 项目状态:
    已结题

项目摘要

Bayesian probability is an important theory of robust decision making. Domains as diverse as physical science, engineering, medicine, and law have applied Bayesian inference successfully. Nevertheless, Bayesian inference is fraught with problems during practical development and deployment. The standard techniques used to construct the implementations are semantically far from the "whiteboard presentation" (mathematical description), are untrustworthy, and expensive to apply. This research addresses this problem by providing an axiomatic foundation with a built-in approximation system that can verify implementations. This research develops an automatic, trustworthy compiler from the whiteboard math used in the development of a theory to an efficient inference model implementation ready for evaluation. This environment provides compilation to a measure-theoretic model of the theory and to an efficient implementation that is provably connected to the measure-theoretic model. This compilation technique delays approximation as long as possible to achieve correctness and allow varied options for approximation, including the use of a novel algorithmic sampling technique, and performs high-powered optimization to compile them to parallelized implementations.
贝叶斯概率是鲁棒决策的一个重要理论。物理科学、工程、医学和法律等领域都成功地应用了贝叶斯推理。然而,贝叶斯推理在实际开发和部署过程中存在很多问题。用于构造实现的标准技术在语义上与“白板表示”(数学描述)相去甚远,不可信,而且应用起来代价高昂。本研究通过提供一个可以验证实现的内置近似系统的公理基础来解决这个问题。本研究开发了一种自动的、可信赖的编译器,从用于理论开发的白板数学到可用于评估的高效推理模型实现。该环境为理论的度量理论模型和可证明与度量理论模型相连接的有效实现提供了编译。这种编译技术尽可能地延迟近似,以实现正确性,并允许各种近似选项,包括使用新的算法采样技术,并执行高性能优化,将它们编译为并行实现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jay McCarthy其他文献

Rhombus: A New Spin on Macros without All the Parentheses
菱形:没有所有括号的宏的新旋转
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Flatt;Taylor Allred;Nia Angle;Stephen De Gabrielle;R. Findler;Jack Firth;K. Gopinathan;Ben Greenman;S. Kasivajhula;Alex Knauth;Jay McCarthy;Sam Phillips;Sorawee Porncharoenwase;Jens Axel Søgaard;Sam Tobin
  • 通讯作者:
    Sam Tobin

Jay McCarthy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jay McCarthy', 18)}}的其他基金

TWC: Small: Automated Protocol Design and Refinement
TWC:小型:自动化协议设计和完善
  • 批准号:
    1617307
  • 财政年份:
    2016
  • 资助金额:
    $ 0.68万
  • 项目类别:
    Standard Grant
EAGER: A Measure Theory Semantics of Probability Theory
EAGER:概率论的测度理论语义
  • 批准号:
    1535490
  • 财政年份:
    2014
  • 资助金额:
    $ 0.68万
  • 项目类别:
    Standard Grant
EAGER: A Measure Theory Semantics of Probability Theory
EAGER:概率论的测度理论语义
  • 批准号:
    1347556
  • 财政年份:
    2013
  • 资助金额:
    $ 0.68万
  • 项目类别:
    Standard Grant
SHF: Small: Modern Web Applications without Callbacks
SHF:小型:没有回调的现代 Web 应用程序
  • 批准号:
    1016334
  • 财政年份:
    2010
  • 资助金额:
    $ 0.68万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 0.68万
  • 项目类别:
    Standard Grant
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
  • 批准号:
    2347850
  • 财政年份:
    2024
  • 资助金额:
    $ 0.68万
  • 项目类别:
    Continuing Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
  • 批准号:
    2247067
  • 财政年份:
    2023
  • 资助金额:
    $ 0.68万
  • 项目类别:
    Standard Grant
Shape Optimization, Free Boundary Problems, and Geometric Measure Theory
形状优化、自由边界问题和几何测量理论
  • 批准号:
    2247096
  • 财政年份:
    2023
  • 资助金额:
    $ 0.68万
  • 项目类别:
    Standard Grant
CAREER: Weighted Fourier extension estimates and interactions with PDEs and geometric measure theory
职业:加权傅里叶扩展估计以及与偏微分方程和几何测度理论的相互作用
  • 批准号:
    2237349
  • 财政年份:
    2023
  • 资助金额:
    $ 0.68万
  • 项目类别:
    Continuing Grant
Analysis on metric measure spaces by optimal transport theory and Markov processes
最优输运理论和马尔可夫过程对度量测度空间的分析
  • 批准号:
    22H04942
  • 财政年份:
    2022
  • 资助金额:
    $ 0.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加性组合学和几何测度论
  • 批准号:
    RGPIN-2017-03755
  • 财政年份:
    2022
  • 资助金额:
    $ 0.68万
  • 项目类别:
    Discovery Grants Program - Individual
Brown’s Spectral Measure: New Computational Methods from Stochastics, Partial Differential Equations, and Operator Theory
布朗谱测量:来自随机学、偏微分方程和算子理论的新计算方法
  • 批准号:
    2055340
  • 财政年份:
    2021
  • 资助金额:
    $ 0.68万
  • 项目类别:
    Continuing Grant
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加性组合学和几何测度论
  • 批准号:
    RGPIN-2017-03755
  • 财政年份:
    2021
  • 资助金额:
    $ 0.68万
  • 项目类别:
    Discovery Grants Program - Individual
Recent Developments on Geometric Measure Theory and its Applications
几何测度理论及其应用的最新进展
  • 批准号:
    2001095
  • 财政年份:
    2020
  • 资助金额:
    $ 0.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了