Collaborative Research: Calderon-Zygmund Operators in Highly Irregular Environments, and Applications

合作研究:高度不规则环境中的 Calderon-Zygmund 算子及其应用

基本信息

  • 批准号:
    1600139
  • 负责人:
  • 金额:
    $ 39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

Calderon-Zygmund operators are mathematical objects that play an important role in the understanding of many physical phenomena, ranging from heat transfer to turbulence in dynamical systems. The classical theory of these operators was designed to work on smooth functions. However, nature often provides us with very irregular media with which to engage. This creates the need for a very low-regularity form of the theory of singular integrals, which the principal investigators on this project have constructed. A consequence of the low-regularity theory is that through the action of Calderon-Zygmund operators on a set in a Euclidean space of a very high dimension, one can sometimes conclude that the set itself is of a much lower dimension than the ambient space, an important piece of information from the perspective of data science. To refine this approach to data analysis is one of the main goals of this project. This project considers several problems in nonhomogeneous harmonic analysis, geometric measure theory, and spectral theory. The common theme uniting the problems is the behavior of singular operators with very good (Calderon-Zygmund) kernels in very bad environments (e.g., on sets with no a priori structure, in spaces with matrix weights). Specifically, the project will pursue the following avenues of research: (1) the David-Semmes problem to characterize the rectifiability of sets and measures in high-dimensional Euclidean space in terms of the boundedness of the corresponding Riesz transforms; (2) the geometry of reflection-less measures; (3) the geometric characterization of higher-dimensional analogues of positive analytic capacity; (4) two-weight estimates for very simple singular operators in the non-Hilbert setting; and (5) sharp estimates for classical operators with matrix weights. Singular integral operators with respect to bad measures and very irregular sets appear naturally in many problems of analysis. One of the reasons for their increasing interest in recent years has been the study of analytic capacity. While the theory for the two-dimensional case (i.e., the Cauchy transform on the complex plane) and the theory of analytic capacity that emerged as its by-product are now very well understood, the analogous theory in higher dimensions has not been fully developed. The main roadblock here is the lack of geometric tools in higher dimensions. Additionally, in higher dimensions, nonhomogeneous situations arise more often than in the plane and more often one might expect. For example, boundary value problems in (otherwise smooth) domains with cusps lead to nonhomogeneous problems, because, unlike what happens in the two-dimensional setting, surface measure on the boundary of such a domain is non-doubling. This becomes an even more vexing problem if one wants to consider harmonic measure estimates for domains on whose boundaries "surface measure" is practically arbitrary. This is an important issue that the project seeks to confront.
卡尔德龙-齐格蒙算子是数学对象,在理解许多物理现象中起着重要作用,从热传递到动力系统中的湍流。这些算子的经典理论被设计用于光滑函数。然而,大自然经常为我们提供非常不规则的媒介。这就产生了对奇异积分理论的一种非常低规则形式的需求,这个项目的主要研究人员已经构建了这种形式。低正则理论的一个结果是,通过Calderon-Zygmund算子在高维欧几里得空间中的集合上的作用,人们有时可以得出结论,该集合本身的维数比周围空间低得多,从数据科学的角度来看,这是一个重要的信息。改进这种数据分析方法是本项目的主要目标之一。本计画考虑了非齐次谐波分析、几何测量理论和频谱理论中的几个问题。统一这些问题的共同主题是非常好的(Calderon-Zygmund)核的奇异算子在非常恶劣的环境下(例如,在没有先验结构的集合上,在具有矩阵权重的空间上)的行为。具体而言,该项目将追求以下研究途径:(1)David-Semmes问题,以相应Riesz变换的有界性来表征高维欧几里德空间中集合和测度的可纠偏性;(2)无反射措施的几何形状;(3)具有正解析能力的高维类似物的几何表征;(4)非hilbert条件下非常简单奇异算子的双权估计;(5)具有矩阵权值的经典算子的尖锐估计。关于不良测度和非常不规则集的奇异积分算子自然出现在许多分析问题中。近年来他们越来越感兴趣的原因之一是对分析能力的研究。虽然二维情况下的理论(即复平面上的柯西变换)和作为其副产品出现的分析能力理论现在已经很好地理解了,但高维的类似理论还没有完全发展起来。这里的主要障碍是缺乏高维的几何工具。此外,在更高的维度中,非齐次情况比在平面中出现得更频繁,也更频繁。例如,在具有顶点的(光滑的)域中的边值问题会导致非齐次问题,因为,与二维环境中发生的情况不同,这种域边界上的表面度量是非加倍的。如果要考虑边界上的“表面测度”实际上是任意的域的调和测度估计,这将成为一个更加令人烦恼的问题。这是该项目试图解决的一个重要问题。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Matrix measures and finite rank perturbations of self-adjoint operators
自伴算子的矩阵测度和有限秩扰动
  • DOI:
    10.4171/jst/324
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Liaw, Constanze;Treil, Sergei
  • 通讯作者:
    Treil, Sergei
“Small step” remodeling and counterexamples for weighted estimates with arbitrarily “smooth” weights
具有任意“平滑”权重的加权估计的“小步骤”重构和反例
  • DOI:
    10.1016/j.aim.2020.107450
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Kakaroumpas, S.;Treil, S.
  • 通讯作者:
    Treil, S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Serguei Treil其他文献

Serguei Treil的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Serguei Treil', 18)}}的其他基金

Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
  • 批准号:
    2154321
  • 财政年份:
    2022
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative research: Weighted Estimates with Matrix Weights and Non-Homogeneous Harmonic Analysis
合作研究:矩阵权重加权估计和非齐次谐波分析
  • 批准号:
    1856719
  • 财政年份:
    2019
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Collaborative research: Universality phenomena and some hard problems of non-homogeneous Harmonic Analysis
合作研究:非齐次调和分析的普遍性现象和一些难题
  • 批准号:
    1301579
  • 财政年份:
    2013
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Collaborative Research: Bellman function, Harmonic Analysis and Operator Theory
合作研究:贝尔曼函数、调和分析和算子理论
  • 批准号:
    0800876
  • 财政年份:
    2008
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Collaborative research: Non-homogeneous harmonic analysis, two weight estimates and spectral problems.
合作研究:非齐次谐波分析、二次权重估计和谱问题。
  • 批准号:
    0501065
  • 财政年份:
    2005
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Collaborative Research: Multidimensional and Non-Homogeneous Harmonic Analysis: Bellman Functions, Perturbations of Normal Operators and Two Weight Estimates of Singular Integrals
合作研究:多维非齐次调和分析:贝尔曼函数、正规算子的扰动和奇异积分的两种权重估计
  • 批准号:
    0200584
  • 财政年份:
    2002
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
An Operator Approach to Problems in Analysis and Probability: Matrix Muckenhoupt Weights, Hankel and Toeplitz Operators, Singular Integrals and the Angle between Past and Future
分析和概率问题的算子方法:矩阵 Muckenhoupt 权重、Hankel 和 Toeplitz 算子、奇异积分以及过去与未来之间的角度
  • 批准号:
    9622936
  • 财政年份:
    1996
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Hankel Operators and Their Applications
数学科学:汉克尔算子及其应用
  • 批准号:
    9304011
  • 财政年份:
    1993
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
  • 批准号:
    2314750
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Cooperative Agreement
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
  • 批准号:
    2315219
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
  • 批准号:
    2335762
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
  • 批准号:
    2336132
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
CyberCorps Scholarship for Service: Building Research-minded Cyber Leaders
Cyber​​Corps 服务奖学金:培养具有研究意识的网络领导者
  • 批准号:
    2336409
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了