Analysis of Extremal Black Holes

极值黑洞分析

基本信息

  • 批准号:
    1600643
  • 负责人:
  • 金额:
    $ 17.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

Black holes have captured the imagination of scientists and the general public since they were predicted by Einstein's general theory of relativity. The PI intends to investigate fundamental mathematical problems concerning the dynamics of black holes in the context of the initial value problem for the celebrated Einstein equations. One of the most outstanding problems in this direction is the black hole stability conjecture, namely that black holes are indeed stable under perturbations from the outside. The resolution of this conjecture would underpin the relevance of black holes in the physical theory. Previous works of the PI uncovered a novel instability property of the so-called extremal black holes under a special class of perturbations. This instability has been further studied by several research groups worldwide both from the point of view of rigorous mathematics and numerics. The PI will strive to provide a complete description for the stability and instability properties of extremal black holes, obtaining in particular mathematically rigorous results for associated physical phenomena predicted by numerical simulations. The project will also investigate important global aspects of the Einstein equations including radiative properties of gravitational waves. Work on this proposal will improve our society's understanding of black holes, and consequently the structure of our universe. The focus of the project is the study of three central problems relating to local and global properties of hyperbolic partial differential equations arising in general relativity. First, the project will investigate the stability problem for extremal and sub-extremal black holes. In this direction, the PI and his collaborators have developed a new method in the context of spherical symmetry which addresses various difficulties at the event horizon and null infinity and is expected to have a wide range of applications in hyperbolic partial differential equations (PDEs). The PI intends to extend this method and also obtain finer boundedness and decay properties of linear waves in order to obtain global results for the black hole stability problem. This project will probe various instabilities in the extremal case which originate from the convergence of non-axisymmetric quasinormal modes to finite values on the real axis and the coupling of the so-called trapping effect and superradiance. These phenomena are of fundamental importance in black hole dynamics and have been the object of extensive numerical simulations in the physics literature, but no rigorous results are presently available. Second, the project will investigate the gluing problem for characteristic initial data of hyperbolic equations, which is an extension of the Riemannian gluing problem, the latter being intensively studied in geometric analysis. Finally the project will develop a scattering theory for the Einstein equations which is expected to provide new insights into the global behavior of the Einstein equations and in particular the study of gravitational waves. The PI strongly believes that the proposal will lead to the discovery of genuinely new analytical techniques applicable in a wider spectrum of problems in geometry, analysis, PDEs and mathematical physics.
自从爱因斯坦的广义相对论预言黑洞以来,黑洞就吸引了科学家和公众的想象力。PI的目的是研究有关黑洞动力学的基本数学问题,在著名的爱因斯坦方程的初值问题的背景下。在这个方向上最突出的问题之一是黑洞稳定性猜想,即黑洞在外部扰动下确实是稳定的。这个猜想的解决将巩固黑洞在物理理论中的相关性。PI先前的工作揭示了所谓的极端黑洞在一类特殊扰动下的一种新的不稳定性。这种不稳定性已经被世界范围内的几个研究小组从严格的数学和数值的角度进行了进一步的研究。PI将努力为极端黑洞的稳定性和不稳定性提供完整的描述,特别是通过数值模拟预测的相关物理现象获得数学上严格的结果。该项目还将研究爱因斯坦方程的重要全球方面,包括引力波的辐射特性。这一提议的工作将提高我们社会对黑洞的理解,从而提高我们宇宙的结构。该项目的重点是研究与广义相对论中产生的双曲型偏微分方程的局部和全局性质有关的三个中心问题。首先,该项目将研究极端和次极端黑洞的稳定性问题。在这个方向上,PI和他的合作者在球对称的背景下开发了一种新方法,解决了事件视界和零无穷大的各种困难,预计将在双曲偏微分方程(PDE)中有广泛的应用。PI打算扩展这种方法,并获得更精细的有界性和线性波的衰减特性,以获得黑洞稳定性问题的全局结果。本项目将探讨极端情况下的各种不稳定性,这些不稳定性源于非轴对称准正规模在真实的轴上收敛到有限值以及所谓的俘获效应和超辐射的耦合。这些现象在黑洞动力学中具有根本的重要性,并且在物理学文献中一直是广泛的数值模拟的对象,但目前没有严格的结果。其次,该项目将研究双曲方程特征初始数据的胶合问题,这是黎曼胶合问题的扩展,后者在几何分析中得到了深入研究。最后,该项目将发展爱因斯坦方程的散射理论,预计这将为爱因斯坦方程的全球行为,特别是引力波的研究提供新的见解。PI坚信,该提案将导致发现真正新的分析技术,适用于更广泛的几何,分析,偏微分方程和数学物理问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stefanos Aretakis其他文献

The Characteristic Gluing Problem for the Einstein Vacuum Equations: Linear and Nonlinear Analysis
  • DOI:
    10.1007/s00023-023-01394-y
  • 发表时间:
    2023-12-07
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Stefanos Aretakis;Stefan Czimek;Igor Rodnianski
  • 通讯作者:
    Igor Rodnianski

Stefanos Aretakis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stefanos Aretakis', 18)}}的其他基金

Analysis of extremal black holes
极值黑洞分析
  • 批准号:
    1265538
  • 财政年份:
    2013
  • 资助金额:
    $ 17.55万
  • 项目类别:
    Continuing Grant

相似国自然基金

带奇点的extremal度量和toric流形上的extremal度量
  • 批准号:
    10901160
  • 批准年份:
    2009
  • 资助金额:
    10.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Analysis of singularities of extremal Riemann surfaces and Klein surfaces in moduli spaces
模空间中极值黎曼曲面和克莱因曲面的奇异性分析
  • 批准号:
    23K03138
  • 财政年份:
    2023
  • 资助金额:
    $ 17.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Extremal Combinatorics: Themes and Challenging Problems
极值组合学:主题和挑战性问题
  • 批准号:
    2401414
  • 财政年份:
    2023
  • 资助金额:
    $ 17.55万
  • 项目类别:
    Continuing Grant
CAREER: Set-Systems: Probabilistic, Geometric and Extremal Perspectives
职业:集合系统:概率、几何和极值观点
  • 批准号:
    2237138
  • 财政年份:
    2023
  • 资助金额:
    $ 17.55万
  • 项目类别:
    Continuing Grant
Spectral and Extremal Graph Theory
谱与极值图论
  • 批准号:
    2245556
  • 财政年份:
    2023
  • 资助金额:
    $ 17.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Extremal and Ramsey Problems for Graphs and Hypergraphs
协作研究:图和超图的极值问题和 Ramsey 问题
  • 批准号:
    2300347
  • 财政年份:
    2023
  • 资助金额:
    $ 17.55万
  • 项目类别:
    Continuing Grant
REU Site: Extremal Graph Theory and Dynamical Systems at RIT
REU 网站:RIT 的极值图论和动力系统
  • 批准号:
    2243938
  • 财政年份:
    2023
  • 资助金额:
    $ 17.55万
  • 项目类别:
    Standard Grant
Discrete Geometry and Extremal Combinatorics
离散几何和极值组合
  • 批准号:
    2246659
  • 财政年份:
    2023
  • 资助金额:
    $ 17.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Extremal and Ramsey Problems for Graphs and Hypergraphs
协作研究:图和超图的极值问题和 Ramsey 问题
  • 批准号:
    2300346
  • 财政年份:
    2023
  • 资助金额:
    $ 17.55万
  • 项目类别:
    Continuing Grant
Extremal Combinatorics: Themes and Challenging Problems
极值组合学:主题和挑战性问题
  • 批准号:
    2246641
  • 财政年份:
    2023
  • 资助金额:
    $ 17.55万
  • 项目类别:
    Continuing Grant
Probabilistic and Extremal Combinatorics
概率和极值组合学
  • 批准号:
    2246907
  • 财政年份:
    2023
  • 资助金额:
    $ 17.55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了