WERF:Biofilm-Enhanced Anaerobic Membrane Bioreactor for Low Temperature Domestic Wastewater Treatment
WERF:用于低温生活污水处理的生物膜增强型厌氧膜生物反应器
基本信息
- 批准号:1604069
- 负责人:
- 金额:$ 31.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1604069SkerlosSustainable water management is increasingly important for utilities and is driving efforts to reduce energy consumption and residuals production in domestic wastewater treatment without compromising effluent quality. Compared with conventional aerobic biological treatment, anaerobic biological treatment produces methane (a renewable energy source), generates a fraction of the residuals and provides substantial energy savings. At the same time, membrane bioreactors have become increasingly popular for domestic wastewater treatment because they provide superior effluent quality and play an important role in water reuse. The objective of this proposal is to fundamentally change reactor designs so that they can treat domestic wastewater at low temperature with low flow rates.Anaerobic Membrane Bioreactors combine the benefits of anaerobic biological treatment (energy production) and membrane separation (excellent effluent quality). However, previous research by the PIs has shown that conventional Anaerobic Membrane Bioreactors are not suitable for temperatures typically found in the United States during much of the year (e.g., below 15 oC) primarily due to net positive greenhouse gas emissions. Their research has also shown that anaerobic biofilm systems coupled with membrane filtration, i.e., Biofilm-Enhanced Anaerobic Membrane Bioreactors), have the potential to overcome low temperature limitations of Anaerobic Membrane Bioreactors. This proposal ambitiously but realistically calls for the first Biofilm-Enhanced Anaerobic Membrane Bioreactors to be researched and validated, achieving high quality effluent, reduced greenhouse gas emissions, and net positive energy production. The research proposed here, has four science and engineering objectives: (1) Establish operating parameters and characterize performance of the Biofilm-Enhanced Anaerobic Membrane Bioreactors at 15°C and 8-h hydraulic retention time. (2) Reduce hydraulic retention time and temperature, and, examine sulfate impacts on system performance. (3) Understand mechanisms for methanogenic activity within the Biofilm-Enhanced Anaerobic Membrane Bioreactor system. (4) Conduct Life Cycle Cost and Life Cycle Environmental Assessments to verify the economic and environmental sustainability of the technology. The research objectives will bring a unique design perspective to Anaerobic Membrane Bioreactor research that combines aspects of system design (e.g., hydraulic retention time, biofilm attachment media, low energy membrane filtration, etc.), with microbial analyses (e.g., high throughput DNA and RNA sequencing, monitoring of functional gene expression, etc.) and treatment performance analysis (e.g. chemical oxygen demand, volatile fatty acid, sulfate, biogas production, biogas methane content, etc.). The design process will be driven by the results of Life Cycle Environmental Assessments and Life Cycle Costs, which will maximize environmental improvements while minimizing cost. The overall systems-based design approach will ultimately ease the transfer of Biofilm-Enhanced Anaerobic Membrane Bioreactors technology into practice. This research represents a novel Anaerobic Membrane Bioreactor technology with the potential to bring an economically viable treatment technology to domestic wastewater treatment in temperate climates while producing net positive energy and net negative greenhouse gas emissions. Research results from lab scale efforts supported in this grant will be transferred directly to a local Anaerobic Membrane Bioreactor pilot plant with significant potential to lead to further developments and piloting of Biofilm-Enhanced Anaerobic Membrane Bioreactor technology, including the transition into practice through interactions with industrial partners and consulting firms. Additional broader impacts from this work include: (1) integration of research and education through involvement of undergraduate students in research and system design/fabrication, (2) incorporation of research findings in courses taught by the PIs, (3) knowledge transfer through partnership with utilities, corporations and consultants, and, (4) dissemination of research results through conference presentations, peer-reviewed journal articles, and seminar and symposium presentations. The PIs also intend to work with the UM Living Building Challenge student team on their home/neighborhood-scale wastewater treatment prototypes.
1604069 Skerlos可持续的水资源管理对公用事业越来越重要,并推动在不影响出水质量的情况下减少生活污水处理中的能源消耗和残留物产生。与传统的好氧生物处理相比,厌氧生物处理产生甲烷(一种可再生能源),产生一小部分残留物,并提供大量的能源节约。与此同时,膜生物反应器在生活污水处理中越来越受欢迎,因为它们提供了上级出水水质,并在水回用中发挥了重要作用。该提案的目的是从根本上改变反应器的设计,使其能够在低温和低流速下处理生活污水。厌氧膜生物反应器联合收割机结合了厌氧生物处理(能源生产)和膜分离(优良的出水水质)的优点。然而,PI先前的研究表明,传统的厌氧膜生物反应器不适合美国一年中大部分时间的典型温度(例如,低于15摄氏度),主要是由于温室气体净排放。他们的研究还表明,厌氧生物膜系统与膜过滤,即,生物膜强化厌氧膜生物反应器),有可能克服低温限制的厌氧膜生物反应器。该提案雄心勃勃但现实地要求研究和验证第一个生物膜增强厌氧膜生物反应器,以实现高质量的污水,减少温室气体排放和净正能量生产。本文提出的研究有四个科学和工程目标:(1)建立生物膜增强厌氧膜生物反应器在15°C和8小时水力停留时间下的操作参数并表征其性能。(2)减少水力停留时间和温度,并检查硫酸盐对系统性能的影响。(3)了解生物膜强化厌氧膜生物反应器系统中的产甲烷活性机制。(4)进行生命周期成本和生命周期环境评估,以验证技术的经济和环境可持续性。研究目标将为厌氧膜生物反应器研究带来独特的设计视角,结合系统设计的各个方面(例如,水力停留时间、生物膜附着介质、低能膜过滤等),利用微生物分析(例如,高通量DNA和RNA测序、功能基因表达的监测等)和处理性能分析(例如化学需氧量、挥发性脂肪酸、硫酸盐、沼气产量、沼气甲烷含量等)。设计过程将由生命周期环境评估和生命周期成本的结果驱动,这将最大限度地改善环境,同时最大限度地降低成本。基于系统的整体设计方法将最终简化生物膜强化厌氧膜生物反应器技术的应用。这项研究代表了一种新型的厌氧膜生物反应器技术,有可能为温带气候下的生活污水处理带来经济可行的处理技术,同时产生净正能量和净负温室气体排放。这项资助支持的实验室规模的研究成果将直接转移到当地的厌氧膜生物反应器中试工厂,该工厂具有巨大的潜力,可以进一步开发和试点生物膜增强厌氧膜生物反应器技术,包括通过与工业合作伙伴和咨询公司的互动过渡到实践中。这项工作的其他更广泛的影响包括:(1)通过本科生参与研究和系统设计/制造,将研究与教育相结合,(2)将研究成果纳入PI教授的课程中,(3)通过与公用事业,公司和顾问的合作进行知识转移,以及(4)通过会议演讲,同行评审的期刊文章,以及研讨会和专题讨论会的介绍。PI还打算与UM Living Building Challenge学生团队合作开发他们的家庭/社区规模的废水处理原型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Skerlos其他文献
Comparative life cycle assessment of unmanned aerial vehicles, internal combustion engine vehicles and battery electric vehicles for grocery delivery
- DOI:
10.1016/j.procir.2020.02.003 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:
- 作者:
Kris Yowtak;Justin Imiola;Michael Andrews;Keith Cardillo;Steven Skerlos - 通讯作者:
Steven Skerlos
Microwave-based CO2 desorption for enhanced direct air capture: experimental validation and techno-economic perspectives
基于微波的二氧化碳解吸增强直接空气捕获:实验验证和技术经济视角
- DOI:
10.1088/1748-9326/ad239f - 发表时间:
2024 - 期刊:
- 影响因子:6.7
- 作者:
Taehong Lim;John E. Foster;B. R. Ellis;Steven Skerlos - 通讯作者:
Steven Skerlos
Environmental LCA on three note-taking devices
- DOI:
10.1016/j.procir.2020.02.125 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:
- 作者:
Arthriya Suksuwan;Avia Matossian;Yichen Zhou;Philip Chacko;Steven Skerlos - 通讯作者:
Steven Skerlos
Growing bricks: Assessing biocement for lower embodied carbon structures
- DOI:
10.1016/j.procir.2019.01.061 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:
- 作者:
Brian Iezzi;Richard Brady;Selim Sardag;Benjamin Eu;Steven Skerlos - 通讯作者:
Steven Skerlos
Micro-aeration for hydrogen sulfide reduction in full-scale anaerobic digesters with limited headspace: Performance and sulfide reduction kinetics
在顶部空间有限的大型厌氧消化池中用于减少硫化氢的微曝气:运行效果及硫化物还原动力学
- DOI:
10.1016/j.psep.2025.106911 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:7.800
- 作者:
Ali Khadir;George Nakhla;Renisha Karki;Lutgarde Raskin;Christopher Muller;Karla Guevarra;Amanda Summers;Laurie Pierce;Parisa Shahbaz;Kati Bell;Steven Skerlos;Embrey Bronstad - 通讯作者:
Embrey Bronstad
Steven Skerlos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Skerlos', 18)}}的其他基金
I-Corps: Bioreactor insert and biofilm support for improved biological and physical treatment of wastewater
I-Corps:生物反应器插件和生物膜支持,用于改善废水的生物和物理处理
- 批准号:
1932659 - 财政年份:2019
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Market Driven Emissions from Recovered CO2 Industrial Gas
回收二氧化碳工业气体的市场驱动排放
- 批准号:
1235688 - 财政年份:2012
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Collaborative Research: Implications of Automotive Greenhouse Gas Policies on Material Flows - A Life Cycle Approach Integrating Engineering, Public Policy, and Market Behavior
合作研究:汽车温室气体政策对物质流的影响——整合工程、公共政策和市场行为的生命周期方法
- 批准号:
0628162 - 财政年份:2006
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
BE MUSES: Implications of Automotive Fuel Economy and Emissions Policies on Materials Flows: A Life Cycle Approach Integrating Engineering, Public Policy, and Market Decisions
BE MUSES:汽车燃油经济性和排放政策对物料流的影响:整合工程、公共政策和市场决策的生命周期方法
- 批准号:
0523265 - 财政年份:2005
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
CAREER: Optimization and Control of Metalworking Fluids in Environmentally Benign Manufacturing Systems
职业:环保制造系统中金属加工液的优化和控制
- 批准号:
0093514 - 财政年份:2001
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Minimization of Health Risks Due to Metalworking Fluid Microbes and Biocides: An Optimal Control System using Microfiltration and Flow Cytometry
最大限度地降低金属加工液微生物和杀菌剂造成的健康风险:使用微过滤和流式细胞术的最佳控制系统
- 批准号:
0084796 - 财政年份:2000
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
相似国自然基金
靶向降解、清除幽门螺杆菌菌膜 (biofilm)的多功能脂质-聚合物杂化纳米粒的制备、作用评价及相关机制研究
- 批准号:81473154
- 批准年份:2014
- 资助金额:60.0 万元
- 项目类别:面上项目
多物理场对大肠杆菌微生物膜(Biofilm)形成的影响
- 批准号:11402265
- 批准年份:2014
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
图们江流域农村生活污水处理中Atmosphere-Exposed Biofilm的净化机理及动力学研究
- 批准号:51269032
- 批准年份:2012
- 资助金额:49.0 万元
- 项目类别:地区科学基金项目
铜绿假单胞菌氨肽酶对生物被膜(Biofilm)发育及抗性的贡献
- 批准号:31140041
- 批准年份:2011
- 资助金额:10.0 万元
- 项目类别:专项基金项目
内生生防芽孢杆菌B3-7生物薄膜(biofilm)形成与其在小麦根围长期定殖的关系研究
- 批准号:30971952
- 批准年份:2009
- 资助金额:33.0 万元
- 项目类别:面上项目
相似海外基金
REU Site: Microbial Biofilm Development, Resistance, & Community Structure
REU 网站:微生物生物膜的发展、耐药性、
- 批准号:
2349311 - 财政年份:2025
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
Building Synthetic Biofilm Consortia for Polyfluorinated Chemicals Biodegradation
建立多氟化学品生物降解合成生物膜联盟
- 批准号:
2343831 - 财政年份:2024
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
A novel anti-biofilm peptide from fish for the combat against antimicrobial resistance
一种来自鱼类的新型抗生物膜肽,用于对抗抗菌素耐药性
- 批准号:
MR/Y503393/1 - 财政年份:2024
- 资助金额:
$ 31.5万 - 项目类别:
Research Grant
Effect of biofilm formation on multiphase flow and wetting properties during cyclic injection of hydrogen in rocks
岩石循环注氢过程中生物膜形成对多相流和润湿特性的影响
- 批准号:
2901554 - 财政年份:2024
- 资助金额:
$ 31.5万 - 项目类别:
Studentship
NSF Convergence Accelerator Track M: Biofilm-based Corrosion Control using 3D Printed Biotechnology
NSF 融合加速器轨道 M:使用 3D 打印生物技术进行基于生物膜的腐蚀控制
- 批准号:
2344389 - 财政年份:2024
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Mathematical models for actin scavenging and biofilm removal
肌动蛋白清除和生物膜去除的数学模型
- 批准号:
DE240100097 - 财政年份:2024
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Early Career Researcher Award
Control of biofilm formation during generation and migration of suspended solids in water distribution systems
配水系统中悬浮固体产生和迁移过程中生物膜形成的控制
- 批准号:
23K04086 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Implications of mobile genetic elements on biofilm formation in Pseudomonas syringae and its biological control.
移动遗传元件对丁香假单胞菌生物膜形成及其生物防治的影响。
- 批准号:
2881413 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Studentship
Development of an electrospun antimicrobial coated tampon for management of bacterial vaginosis biofilm
开发用于治疗细菌性阴道病生物膜的静电纺丝抗菌涂层卫生棉条
- 批准号:
BB/Y512357/1 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Training Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:
2313746 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant