Simulation and Design Optimization for Neutrino Beamlines
中微子束线的仿真和设计优化
基本信息
- 批准号:1607241
- 负责人:
- 金额:$ 16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports work to understand neutrinos: the smallest but most common massive particle in the universe. Although there are a billion neutrinos for every more well-known electron or proton, neutrinos interact only via the so-called "weak" force: so they rarely bump into anything, even the detectors designed to study them. That means they are also the least well understood of the fundamental particles. One of the big mysteries in neutrino science is how they change (or ?oscillate?) from one type to another. Neutrino oscillation experiments explore possible explanations for the difference between matter and anti-matter in the Universe. This project will improve the computational tools for simulating and estimating neutrino fluxes for existing and future neutrino oscillation experiments. These tools are necessary for efficient and cost-effective design of the neutrino beams and detectors used in high-energy particle physics. The best available data on hadron production cross sections and other experimental inputs will be incorporated into existing beam-line simulations, and improved tools for rapid iteration of studies for novel beam-line designs will be created. This effort will both produce improved simulations of the NuMI beamline at Fermilab, leading to improved measurements of neutrino cross sections in the MINERvA experiment, and inform the design and optimization of the future DUNE/LBNF long baseline neutrino oscillation experiment. The methods used in this program are also broadly applicable to the optimization of beam-line and detector systems for physics research. Graduate and undergraduate students will be exposed to modern simulation and computing techniques. Previous students from this group have gone on to highly successful careers both in the private sector and in High Energy Physics.
该奖项支持理解中微子的工作:中微子是宇宙中最小但最常见的大质量粒子。尽管每增加一个众所周知的电子或质子就会有10亿个中微子,但中微子之间的相互作用只通过所谓的“弱”力:因此它们很少撞上任何东西,即使是设计用来研究它们的探测器。这意味着它们也是最不为人所知的基本粒子。中微子科学中的一大谜团是它们如何变化(或振荡?)从一种类型到另一种类型。中微子振荡实验探索了宇宙中物质和反物质之间的差异的可能解释。该项目将为现有和未来的中微子振荡实验改进模拟和估计中微子通量的计算工具。这些工具对于高效和经济高效地设计用于高能粒子物理的中微子光束和探测器是必要的。关于强子产生截面和其他实验输入的最佳可用数据将被合并到现有的束线模拟中,并将创建用于快速迭代研究新的束线设计的改进的工具。这项工作将改进费米实验室Numi光束线的模拟,从而改进Minerva实验中中微子截面的测量,并为未来沙丘/LBNF长基线中微子振荡实验的设计和优化提供信息。该程序所使用的方法也广泛适用于物理研究中的束线和探测器系统的优化。研究生和本科生将接触到现代模拟和计算技术。这一群体以前的学生在私营部门和高能物理领域都取得了非常成功的职业生涯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heidi Schellman其他文献
Heidi Schellman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Heidi Schellman', 18)}}的其他基金
Detection Of GeV Cosmic Rays In An Undergraduate Laboratory
在本科实验室中检测 GeV 宇宙射线
- 批准号:
9351292 - 财政年份:1993
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
在噪声和约束条件下的unitary design的理论研究
- 批准号:12147123
- 批准年份:2021
- 资助金额:18 万元
- 项目类别:专项基金项目
相似海外基金
HCC: Medium: Shape Optimization for the Design and Simulation of Electromagnetic Systems
HCC:介质:电磁系统设计和仿真的形状优化
- 批准号:
2313156 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Using virtual simulation towards design optimization of artificial disc replacement biomechanics
使用虚拟仿真来优化人工椎间盘置换生物力学的设计
- 批准号:
572919-2022 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
University Undergraduate Student Research Awards
Bridging Across Scales and Disciplines: Simulation-based Design and Optimization of Tightly Coupled Thermal/Fluid Systems
跨尺度和学科的桥梁:紧耦合热/流体系统的基于仿真的设计和优化
- 批准号:
RGPIN-2019-04798 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Discovery Grants Program - Individual
SBIR Phase I: Machine learning-powered simulation of additive manufacturing for real-time design and process optimization
SBIR 第一阶段:基于机器学习的增材制造仿真,用于实时设计和流程优化
- 批准号:
2151667 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Development of numerical simulation scheme for optimization of molding conditions and material design of thermoplastic composites
开发用于优化热塑性复合材料成型条件和材料设计的数值模拟方案
- 批准号:
22K14489 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A Musculoskeletal Simulation Framework for In Silico Design and Optimization of a Soft Exosuit for Children with Muscular Dystrophy
用于肌肉萎缩症儿童软外装的计算机设计和优化的肌肉骨骼模拟框架
- 批准号:
10324878 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Bridging Across Scales and Disciplines: Simulation-based Design and Optimization of Tightly Coupled Thermal/Fluid Systems
跨尺度和学科的桥梁:紧耦合热/流体系统的基于仿真的设计和优化
- 批准号:
RGPIN-2019-04798 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Discovery Grants Program - Individual
A simulation-based technology for stochastic modeling, sensitivity analysis and design optimization, aimed at development of next-generation micro-fluidic devices for biomedical applications.
一种用于随机建模、灵敏度分析和设计优化的模拟技术,旨在开发用于生物医学应用的下一代微流体设备。
- 批准号:
10323474 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Big Models using Big Data for Simulation-based Design and Operational Optimization
使用大数据进行基于仿真的设计和操作优化的大模型
- 批准号:
RGPIN-2018-06589 - 财政年份:2020
- 资助金额:
$ 16万 - 项目类别:
Discovery Grants Program - Individual
Bridging Across Scales and Disciplines: Simulation-based Design and Optimization of Tightly Coupled Thermal/Fluid Systems
跨尺度和学科的桥梁:紧耦合热/流体系统的基于仿真的设计和优化
- 批准号:
RGPIN-2019-04798 - 财政年份:2020
- 资助金额:
$ 16万 - 项目类别:
Discovery Grants Program - Individual