Automorphism Groups and Morse Boundaries

自同构群和莫尔斯边界

基本信息

  • 批准号:
    1607616
  • 负责人:
  • 金额:
    $ 40.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS 1607616, Principal Investigator: Ruth CharneyMathematics is used to model physical systems and to analyze data sets. Increasingly, these models take the form of geometric objects. This project focuses on a class of geometric objects that arise as models in a number of contexts, including robotics and genetics. Geometric properties of these models and their symmetry groups are reflected in properties of the physical systems. Questions may involve either local geometry (what happens near a particular point) or large-scale geometry (the structure of the object viewed from a distance). This project concerns large-scale geometry. By introducing a new notion of a "boundary" for the geometries in question, we are able to identify and quantify certain types of behavior, known as hyperbolic behavior. The study of these boundaries, and their implications for the geometry and symmetry of the objects in question, is the main theme of this project.Boundaries of geodesic metric spaces have played an important role in the study of hyperbolic groups, for example in proving rigidity theorems and dynamical properties. Boundaries can also be defined for CAT(0) spaces, however they are not quasi-isometry invariant, hence do not give a well-defined boundary for a CAT(0) group. In recent work, the principal investigator and Sultan introduced a new boundary, called the Morse boundary, for CAT(0) spaces which is quasi-isometry invariant and behaves more like the boundary of a hyperbolic space. Subsequently, Cordes generalized this construction to obtain a Morse boundary for any proper geodesic metric space. This offers a potentially powerful new tool for studying large classes of groups, such as acylindrically hyperbolic groups. The first part of this project will investigate properties of these boundaries and their implications for the groups in question. The second part of the project concerns automorphism groups of right-angled Artin groups (RAAGs). Automorphism groups of free groups, mapping class groups, and linear groups have many properties in common. Automorphism groups of RAAGs give a context in which to study these commonalities. As Teichmuller space has been central to the study of mapping class groups, Culler and Vogtmann's Outer space has been a fundamental tool in the study of automorphism groups of free groups. Similarly, analogues of the curve complex of a surface have been introduced for free groups and shown to be hyperbolic. The second part of this project seeks to find an analogous Outer Space for RAAGs and to study generalizations of the free factor and free splitting complexes for all RAAGs.
摘要奖:DMS 1607616,首席研究员:Ruth Charney数学用于物理系统建模和分析数据集。 这些模型越来越多地采用几何对象的形式。该项目的重点是一类几何对象,这些对象在许多环境中作为模型出现,包括机器人和遗传学。这些模型及其对称群的几何性质反映在物理系统的性质中。问题可能涉及局部几何(在特定点附近发生的事情)或大尺度几何(从远处观察物体的结构)。这个项目涉及大规模的几何学。 通过引入一个新的概念的“边界”的几何问题,我们能够识别和量化某些类型的行为,称为双曲行为。 研究这些边界及其对几何和对称性的影响是这个项目的主题。测地度量空间的边界在双曲群的研究中发挥了重要作用,例如在证明刚性定理和动力学性质方面。 边界也可以定义为CAT(0)空间,但它们不是拟等距不变的,因此不能给出CAT(0)群的明确边界。 在最近的工作中,首席研究员和苏丹介绍了一个新的边界,称为莫尔斯边界,CAT(0)空间是拟等距不变的,其行为更像双曲空间的边界。随后,Cordes推广了这个构造,得到了任何真测地度量空间的一个莫尔斯边界。 这提供了一个潜在的强大的新工具,研究大类的群体,如acylindrical双曲群。 本项目的第一部分将调查这些边界的属性及其对相关群体的影响。 该项目的第二部分涉及直角Artin群(RAAGs)的自同构群。 自由群、映射类群和线性群的自同构群有许多共同的性质。 RAAG的自同构群提供了一个研究这些共性的背景。 由于Teichmuller空间一直是研究映射类群的核心,Culler和Vogtmann的外层空间一直是研究自由群的自同构群的基本工具。 类似地,曲面的曲线复形的类似物已被引入自由群,并被证明是双曲的。 该项目的第二部分旨在为RAAGs找到一个类似的外层空间,并研究所有RAAGs的自由因子和自由分裂复合物的一般化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruth Charney其他文献

Convexity of parabolic subgroups in Artin groups
Artin 群中抛物线子群的凸性
Finite K (π, 1)s for Artin Groups
Artin 群的有限 K (π, 1)s
  • DOI:
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruth Charney;Michael W. Davis
  • 通讯作者:
    Michael W. Davis
STRICT HYPERBOLIZATION
严格的超值化
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruth Charney
  • 通讯作者:
    Ruth Charney
Reciprocity of growth functions of Coxeter groups
Coxeter 群增长函数的互易
  • DOI:
    10.1007/bf00150764
  • 发表时间:
    1991
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Ruth Charney;Michael W. Davis
  • 通讯作者:
    Michael W. Davis
Singular Metrics of Nonpositive Curvature on Branched Covers of Riemannian Manifolds
黎曼流形分支覆盖上非正曲率的奇异度量
  • DOI:
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruth Charney;Michael W. Davis
  • 通讯作者:
    Michael W. Davis

Ruth Charney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruth Charney', 18)}}的其他基金

AWM-SIAM Workshop and Kovalevsky Lecture, 2014
AWM-SIAM 研讨会和 Kovalevsky 讲座,2014
  • 批准号:
    1346466
  • 财政年份:
    2014
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Standard Grant
AWM Workshops and Noether Lecture 2015, January 10-13, 2015; March 14-18, 2015
AWM 研讨会和 Noether 讲座 2015,2015 年 1 月 10-13 日;
  • 批准号:
    1440016
  • 财政年份:
    2014
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Standard Grant
Artin groups and CAT(0) spaces
Artin 群和 CAT(0) 空间
  • 批准号:
    1106726
  • 财政年份:
    2011
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Standard Grant
Research in Geometric Group theory: Artin groups and Automorphism Groups
几何群论研究:Artin群和自同构群
  • 批准号:
    0705396
  • 财政年份:
    2007
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Standard Grant
Research in Geometric Group Theory
几何群论研究
  • 批准号:
    0405623
  • 财政年份:
    2004
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Research in Geometric Group Theory
数学科学:几何群论研究
  • 批准号:
    9208071
  • 财政年份:
    1992
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Research in Algebraic and Differential Topology
数学科学:代数和微分拓扑研究
  • 批准号:
    8607968
  • 财政年份:
    1986
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Research in Algebraic Topology, K-theory and Algebraic Geometry
数学科学:代数拓扑、K理论和代数几何研究
  • 批准号:
    8509397
  • 财政年份:
    1985
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
  • 批准号:
    7919153
  • 财政年份:
    1979
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Fellowship Award

相似海外基金

Support for Institutes and Research Groups on Qualitative and Multi-Method Research: 2024-2026
对定性和多方法研究机构和研究小组的支持:2024-2026
  • 批准号:
    2343087
  • 财政年份:
    2024
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Standard Grant
Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
  • 批准号:
    2401351
  • 财政年份:
    2024
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Standard Grant
Trust in forensic science evidence in the criminal justice system: The experience of marginalised groups
刑事司法系统中对法医科学证据的信任:边缘群体的经历
  • 批准号:
    ES/Y010639/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Research Grant
HSI Implementation and Evaluation Project: Scaling and Extending Exploratory Reading Groups to Strengthen Computing Pathways
HSI 实施和评估项目:扩大和扩展探索性阅读小组以加强计算途径
  • 批准号:
    2414332
  • 财政年份:
    2024
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Continuing Grant
Torsors under Reductive Groups and Dualities for Hitchin Systems
希钦系统还原群和对偶下的托索
  • 批准号:
    2402553
  • 财政年份:
    2024
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Standard Grant
Conference: Zassenhaus Groups and Friends Conference 2024
会议:2024 年 Zassenhaus 团体和朋友会议
  • 批准号:
    2346615
  • 财政年份:
    2024
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Standard Grant
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
  • 批准号:
    24K16928
  • 财政年份:
    2024
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Brauer groups and Neron Severi groups of surfaces over finite fields
有限域上的表面布劳尔群和 Neron Severi 群
  • 批准号:
    23K25768
  • 财政年份:
    2024
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
'Leaders Like Us': Co-designing a framework to develop young physical activity leader programmes for girls from underserved groups
“像我们这样的领导者”:共同设计一个框架,为来自服务不足群体的女孩制定年轻的体育活动领导者计划
  • 批准号:
    MR/Z503976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Research Grant
The mechanistic basis of slow-fast phenotypic diversity and its functional and evolutionary significance in social groups
慢-快表型多样性的机制基础及其在社会群体中的功能和进化意义
  • 批准号:
    2241230
  • 财政年份:
    2024
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了