Artin groups and CAT(0) spaces
Artin 群和 CAT(0) 空间
基本信息
- 批准号:1106726
- 负责人:
- 金额:$ 28.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Geometric group theory explores the interaction between groups and geometry. Of central interest are geometries satisfying certain curvature conditions and the groups that act on them. This project concerns right-angled Artin groups, a class of groups that interpolates between free groups and free abelian groups. These groups have played an increasingly important role in geometric group theory and low dimensional topology in recent years. The action of right-angled Artin groups on cubical complexes satisfying a non- positive curvature condition, known as the CAT(0) condition, has been central to our understanding of these groups as well as to many of their applications. Moreover, these actions serve as a rich class of examples for understanding more general CAT(0) spaces. This project is designed to further our understanding of right-angled Artin groups, their automorphisms, and their action on cubical complexes, and to explore implications for more general CAT(0) spaces.Geometric group theory is a young and exciting field that combines techniques from several areas of mathematics to give new insight into groups of symmetries of geometric objects. Symmetries play an important role throughout the sciences, particularly in chemistry, physics, and astronomy. The goal of this project is to develop a deeper understanding of symmetry groups of a certain type of geometric object, known as a cubical complex. Cubical complexes arise in many contexts. For example, they can be used to model robotic systems, so that mathematical properties of the geometry translate directly into physical properties of the robot. This is a growing area of research with potential for many applications. In addition, the PI is involved in a variety of activities designed to engage young people, particularly women, in mathematics. Ideas from this project are being used to involve these young people in the frontier of mathematics.
几何群论探讨群与几何之间的相互作用。 中心的兴趣是几何满足一定的曲率条件和集团的作用。这个项目涉及直角阿廷群,一类群之间的自由群和自由阿贝尔群插值。 近年来,这些群在几何群论和低维拓扑学中起着越来越重要的作用。 直角Artin群对满足非正曲率条件(称为CAT(0)条件)的三次复形的作用,对于我们理解这些群以及它们的许多应用都是至关重要的。 此外,这些动作作为理解更一般的CAT(0)空间的丰富的例子。 本项目旨在加深我们对直角Artin群、它们的自同构以及它们在立方复形上的作用的理解,并探索对更一般的CAT(0)空间的影响。几何群论是一个年轻而令人兴奋的领域,它结合了几个数学领域的技术,为几何对象的对称性群提供了新的见解。对称性在整个科学中扮演着重要的角色,特别是在化学,物理学和天文学中。 这个项目的目标是发展一个更深层次的理解对称群的某种类型的几何对象,被称为立体复杂。立方复形出现在许多情况下。 例如,它们可用于机器人系统建模,以便几何形状的数学属性直接转换为机器人的物理属性。 这是一个不断增长的研究领域,具有许多应用潜力。 此外,PI还参与了旨在吸引年轻人,特别是妇女参与数学的各种活动。 这个项目的想法被用来让这些年轻人参与数学的前沿。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruth Charney其他文献
Convexity of parabolic subgroups in Artin groups
Artin 群中抛物线子群的凸性
- DOI:
10.1112/blms/bdu077 - 发表时间:
2014 - 期刊:
- 影响因子:0.9
- 作者:
Ruth Charney;L. Paris - 通讯作者:
L. Paris
Finite K (π, 1)s for Artin Groups
Artin 群的有限 K (π, 1)s
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
Ruth Charney;Michael W. Davis - 通讯作者:
Michael W. Davis
Reciprocity of growth functions of Coxeter groups
Coxeter 群增长函数的互易
- DOI:
10.1007/bf00150764 - 发表时间:
1991 - 期刊:
- 影响因子:0.5
- 作者:
Ruth Charney;Michael W. Davis - 通讯作者:
Michael W. Davis
Singular Metrics of Nonpositive Curvature on Branched Covers of Riemannian Manifolds
黎曼流形分支覆盖上非正曲率的奇异度量
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:0
- 作者:
Ruth Charney;Michael W. Davis - 通讯作者:
Michael W. Davis
Ruth Charney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruth Charney', 18)}}的其他基金
Automorphism Groups and Morse Boundaries
自同构群和莫尔斯边界
- 批准号:
1607616 - 财政年份:2016
- 资助金额:
$ 28.74万 - 项目类别:
Continuing Grant
AWM-SIAM Workshop and Kovalevsky Lecture, 2014
AWM-SIAM 研讨会和 Kovalevsky 讲座,2014
- 批准号:
1346466 - 财政年份:2014
- 资助金额:
$ 28.74万 - 项目类别:
Standard Grant
AWM Workshops and Noether Lecture 2015, January 10-13, 2015; March 14-18, 2015
AWM 研讨会和 Noether 讲座 2015,2015 年 1 月 10-13 日;
- 批准号:
1440016 - 财政年份:2014
- 资助金额:
$ 28.74万 - 项目类别:
Standard Grant
Research in Geometric Group theory: Artin groups and Automorphism Groups
几何群论研究:Artin群和自同构群
- 批准号:
0705396 - 财政年份:2007
- 资助金额:
$ 28.74万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Geometric Group Theory
数学科学:几何群论研究
- 批准号:
9208071 - 财政年份:1992
- 资助金额:
$ 28.74万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research in Algebraic and Differential Topology
数学科学:代数和微分拓扑研究
- 批准号:
8607968 - 财政年份:1986
- 资助金额:
$ 28.74万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research in Algebraic Topology, K-theory and Algebraic Geometry
数学科学:代数拓扑、K理论和代数几何研究
- 批准号:
8509397 - 财政年份:1985
- 资助金额:
$ 28.74万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
7919153 - 财政年份:1979
- 资助金额:
$ 28.74万 - 项目类别:
Fellowship Award
相似海外基金
Support for Institutes and Research Groups on Qualitative and Multi-Method Research: 2024-2026
对定性和多方法研究机构和研究小组的支持:2024-2026
- 批准号:
2343087 - 财政年份:2024
- 资助金额:
$ 28.74万 - 项目类别:
Standard Grant
Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
- 批准号:
2401351 - 财政年份:2024
- 资助金额:
$ 28.74万 - 项目类别:
Standard Grant
Trust in forensic science evidence in the criminal justice system: The experience of marginalised groups
刑事司法系统中对法医科学证据的信任:边缘群体的经历
- 批准号:
ES/Y010639/1 - 财政年份:2024
- 资助金额:
$ 28.74万 - 项目类别:
Research Grant
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 28.74万 - 项目类别:
HSI Implementation and Evaluation Project: Scaling and Extending Exploratory Reading Groups to Strengthen Computing Pathways
HSI 实施和评估项目:扩大和扩展探索性阅读小组以加强计算途径
- 批准号:
2414332 - 财政年份:2024
- 资助金额:
$ 28.74万 - 项目类别:
Continuing Grant
Torsors under Reductive Groups and Dualities for Hitchin Systems
希钦系统还原群和对偶下的托索
- 批准号:
2402553 - 财政年份:2024
- 资助金额:
$ 28.74万 - 项目类别:
Standard Grant
Conference: Zassenhaus Groups and Friends Conference 2024
会议:2024 年 Zassenhaus 团体和朋友会议
- 批准号:
2346615 - 财政年份:2024
- 资助金额:
$ 28.74万 - 项目类别:
Standard Grant
Bilingualism as a cognitive reserve factor: the behavioral and neural underpinnings of cognitive control in bilingual patients with aphasia
双语作为认知储备因素:双语失语症患者认知控制的行为和神经基础
- 批准号:
10824767 - 财政年份:2024
- 资助金额:
$ 28.74万 - 项目类别:
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
- 批准号:
24K16928 - 财政年份:2024
- 资助金额:
$ 28.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Brauer groups and Neron Severi groups of surfaces over finite fields
有限域上的表面布劳尔群和 Neron Severi 群
- 批准号:
23K25768 - 财政年份:2024
- 资助金额:
$ 28.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)