Curvature gradient driven assembly of trapped and reconfigurable structures

俘获和可重构结构的曲率梯度驱动组件

基本信息

  • 批准号:
    1607878
  • 负责人:
  • 金额:
    $ 42.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

Non-technical AbstratThe ability to organize microscale particles into well-defined structures lies at the heart of our ability to design new soft, reconfigurable materials. Often, external electrostatic or magnetic fields are used to guide particles into positions where they can interact and form structures. This work studies fields that have not been widely appreciated or used in the past. Particles on fluid interfaces deform and increase the area of the interface around them. The product of surface tension and this area increase is an energy field that depends on the curvature of the fluid interface, so particles move along curvature gradients. Through this simple but remarkable fact, the geometry of the interface itself can be used to direct assembly. Here, these fields are studied to identify new ways to form structures difficult to form by conventional means to make new materials whose properties are explored. Graduate and undergraduate students are trained in the course of performing the proposed research, including students in the Louis Stokes Alliance for Minority Participation program, the Advancing Women in Engineering Program and the UPENN MRSEC REU program. New knowledge developed will be incorporated in a graduate course on interfacial phenomena.Technical AbstractThis research seeks to establish new strategies for directed assembly of micron and sub-micron scale particles to go well beyond the usual close packed assemblies. Particle trapped at fluid interfaces interact and migrate along interface curvature gradients via capillarity. These energies drive formation of complex structures strongly correlated with the interface curvature field, influenced by particle-particle interactions. Since soft matter is inherently deformable, such interactions are a natural route to form reconfigurable, tunable assemblies. Different classes of structures are studied using optical microscopy to observe structures, lithographically defined vessels to mold fluid interfaces and magnetic and other probes to perturb the structures and to guide their reconfiguration. Kinetically trapped structures are studied to form colloidal monolayer membranes with voids, dense regions and oriented structures which respond to changes in interface shape. Equilibrated structures are studied to form structures aligned along principle axes of the interfaces and to study their reconfiguration upon interface perturbation. The (dynamics of) structure formation is observed by optical microscopy for particle shapes and sizes selected for the scale of capillary interactions that they excite and their ability to form oriented structures with associated anisotropies in the structural response to perturbation. For both limits, particle positions/ orientations are compared to and correlated with the interface curvature. Observations are compared to appropriate prediction based on, for example, Stokesian Dynamics simulations for trapped structures and Monte Carlo simulations for equilibrated structures.
非技术摘要将微米级颗粒组织成明确结构的能力是我们设计新型柔软、可重构材料能力的核心。 通常,外部静电或磁场用于引导粒子进入可以相互作用并形成结构的位置。这项工作研究了过去没有被广泛重视或使用的领域。 流体界面上的颗粒会变形并增加它们周围的界面面积。表面张力和面积增加的乘积是一个能量场,该能量场取决于流体界面的曲率,因此粒子沿着曲率梯度移动。 通过这个简单但值得注意的事实,界面本身的几何形状可以用来指导组装。 在这里,对这些领域进行研究,以确定形成传统方法难以形成的结构的新方法,从而制造其特性得到探索的新材料。研究生和本科生在进行拟议研究的过程中接受了培训,包括路易斯·斯托克斯少数族裔参与联盟项目、推进女性工程项目和 UPENN MRSEC REU 项目的学生。开发的新知识将纳入界面现象研究生课程中。技术摘要本研究旨在建立微米和亚微米级颗粒定向组装的新策略,以远远超出通常的密堆积组装。 捕获在流体界面处的颗粒通过毛细作用沿着界面曲率梯度相互作用和迁移。 这些能量驱动与界面曲率场密切相关的复杂结构的形成,并受到粒子-粒子相互作用的影响。由于软物质本质上是可变形的,因此这种相互作用是形成可重构、可调组件的自然途径。研究不同类别的结构,使用光学显微镜观察结构,使用光刻定义的容器来塑造流体界面,并使用磁性和其他探针来扰动结构并指导其重新配置。研究动力学捕获结构以形成具有空隙、致密区域和响应界面形状变化的定向结构的胶体单层膜。研究平衡结构以形成沿界面主轴对齐的结构,并研究它们在界面扰动时的重新配置。 通过光学显微镜观察结构形成(的动力学),选择颗粒形状和尺寸,这些形状和尺寸是根据它们激发的毛细管相互作用的规模以及它们在结构对扰动的响应中形成具有相关各向异性的定向结构的能力而选择的。对于这两个限制,粒子位置/方向与界面曲率进行比较并相关。 将观察结果与基于例如捕获结构的斯托克斯动力学模拟和平衡结构的蒙特卡罗模拟的适当预测进行比较。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kathleen Stebe其他文献

Cells Sense and Respond to Curvature by Patterning Stress Fibers and Undergoing Curvature Guided Migration
  • DOI:
    10.1016/j.bpj.2017.11.3034
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Kathleen Stebe
  • 通讯作者:
    Kathleen Stebe

Kathleen Stebe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kathleen Stebe', 18)}}的其他基金

Active Surface Agents: Enhanced Transport by Active Colloids at Fluid Interfaces
活性表面剂:活性胶体在流体界面处增强传输
  • 批准号:
    1943394
  • 财政年份:
    2020
  • 资助金额:
    $ 42.75万
  • 项目类别:
    Standard Grant
Process Intensification via Bijels for Simultaneous and Continuous Catalytic Reaction and Separation
通过 Bijels 进行同步连续催化反应和分离的过程强化
  • 批准号:
    1945841
  • 财政年份:
    2020
  • 资助金额:
    $ 42.75万
  • 项目类别:
    Standard Grant
Particle/Protein Interaction and Migration via Anisotropic Membrane Deformation
通过各向异性膜变形实现颗粒/蛋白质相互作用和迁移
  • 批准号:
    1133267
  • 财政年份:
    2012
  • 资助金额:
    $ 42.75万
  • 项目类别:
    Continuing Grant
Directed Assembly by Capillarity
毛细管作用定向组装
  • 批准号:
    1066284
  • 财政年份:
    2011
  • 资助金额:
    $ 42.75万
  • 项目类别:
    Continuing Grant
Drop detachment modes in microfluidics devices
微流体装置中的液滴分离模式
  • 批准号:
    0651035
  • 财政年份:
    2007
  • 资助金额:
    $ 42.75万
  • 项目类别:
    Continuing Grant
MRI/Engineering Equipment Proposal: Acquisition of a Multi-user Imaging Ellipsometer
MRI/工程设备提案:购买多用户成像椭偏仪
  • 批准号:
    0318241
  • 财政年份:
    2003
  • 资助金额:
    $ 42.75万
  • 项目类别:
    Standard Grant
Evaporating Fluid Microstructures: A Means of Directing Nanoparticle Assembly
蒸发流体微观结构:引导纳米粒子组装的一种方法
  • 批准号:
    0244592
  • 财政年份:
    2003
  • 资助金额:
    $ 42.75万
  • 项目类别:
    Standard Grant
Measuring the Kinetics of Surfactant Adsorptive - Desorptive Exchange: The Role of Surfactant Structure and Charge
测量表面活性剂吸附-解吸交换动力学:表面活性剂结构和电荷的作用
  • 批准号:
    9520972
  • 财政年份:
    1996
  • 资助金额:
    $ 42.75万
  • 项目类别:
    Continuing Grant
Engineering Research Equipment: Total Internal Reflectance Fluorescence (TIRF) for Bioengineering at Interfaces
工程研究设备:用于界面生物工程的全内反射荧光 (TIRF)
  • 批准号:
    9500468
  • 财政年份:
    1995
  • 资助金额:
    $ 42.75万
  • 项目类别:
    Standard Grant
U.S.-France Cooperative Research: Characterization of Surfactant Mass Transfer Kinetics and their Impact on Confined Multi-Phase Flows
美法合作研究:表面活性剂传质动力学的表征及其对受限多相流的影响
  • 批准号:
    9217202
  • 财政年份:
    1993
  • 资助金额:
    $ 42.75万
  • 项目类别:
    Standard Grant

相似国自然基金

Ni-20Cr合金梯度纳米结构的低温构筑及其腐蚀行为研究
  • 批准号:
    52301123
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
抗AGR2单克隆抗体抗肿瘤活性与机制研究
  • 批准号:
    81201769
  • 批准年份:
    2012
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
基于肺结节多正交位CT图像Curvelet纹理构建 Gradient Boosting 集成预测模型
  • 批准号:
    81172772
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目
中国健康女性阴道微生态系统中乳杆菌菌种多样性研究
  • 批准号:
    81170535
  • 批准年份:
    2011
  • 资助金额:
    68.0 万元
  • 项目类别:
    面上项目
基于Laplace Error惩罚函数的变量选择方法及其在全基因组关联分析中的应用
  • 批准号:
    11001280
  • 批准年份:
    2010
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
长白山泥炭藓丰富度偏峰分布格局的植物相互作用调控机理
  • 批准号:
    40971036
  • 批准年份:
    2009
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
海拔对榕小蜂群落多样性及榕-蜂互惠体系的影响
  • 批准号:
    30972294
  • 批准年份:
    2009
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Data-driven optimization of therapy for heart failure
数据驱动的心力衰竭治疗优化
  • 批准号:
    10467277
  • 财政年份:
    2022
  • 资助金额:
    $ 42.75万
  • 项目类别:
Data-driven optimization of therapy for heart failure
数据驱动的心力衰竭治疗优化
  • 批准号:
    10615143
  • 财政年份:
    2022
  • 资助金额:
    $ 42.75万
  • 项目类别:
Climate Penalty: Climate-driven Increases in Ozone and PM2.5 Levels and Mortality
气候惩罚:气候驱动的臭氧和 PM2.5 水平和死亡率增加
  • 批准号:
    10372176
  • 财政年份:
    2021
  • 资助金额:
    $ 42.75万
  • 项目类别:
Predicting concentration-gradient-driven liquid transport in 2D membranes
预测二维膜中浓度梯度驱动的液体传输
  • 批准号:
    DP210102155
  • 财政年份:
    2021
  • 资助金额:
    $ 42.75万
  • 项目类别:
    Discovery Projects
AI Driven Neural Activity Manipulation and Intelligence Engineering
人工智能驱动的神经活动操纵和智能工程
  • 批准号:
    20J22906
  • 财政年份:
    2020
  • 资助金额:
    $ 42.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
THz driven injection for high-quality high-gradient novel acceleration
太赫兹驱动注入实现高质量高梯度新颖加速
  • 批准号:
    ST/T002735/1
  • 财政年份:
    2019
  • 资助金额:
    $ 42.75万
  • 项目类别:
    Research Grant
Development of a water purification device for space residence using droplets that are self-driven by a surface tension gradient
利用表面张力梯度自驱动液滴开发太空居住水净化装置
  • 批准号:
    19K22015
  • 财政年份:
    2019
  • 资助金额:
    $ 42.75万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Dynamic Filling of Gas Gradient for an Implosion Driven Hypervelocity Launcher
内爆驱动超高速发射器的气体梯度动态填充
  • 批准号:
    512616-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 42.75万
  • 项目类别:
    University Undergraduate Student Research Awards
Dynamic Filling of Gas Gradient for an Implosion Driven Hypervelocity Launcher
内爆驱动超高速发射器的气体梯度动态填充
  • 批准号:
    512678-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 42.75万
  • 项目类别:
    University Undergraduate Student Research Awards
Torque driven by liquid crystal droplets under a temperature gradient
温度梯度下液晶液滴驱动的扭矩
  • 批准号:
    16H07290
  • 财政年份:
    2016
  • 资助金额:
    $ 42.75万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了