Process Intensification via Bijels for Simultaneous and Continuous Catalytic Reaction and Separation
通过 Bijels 进行同步连续催化反应和分离的过程强化
基本信息
- 批准号:1945841
- 负责人:
- 金额:$ 41.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Chemical process intensification, driven by societal needs for sustainable manufacturing, exploits processes designed to reduce energy demand and minimize environmental impact. Membrane reactors that continuously perform simultaneous catalytic reaction and separation are an important example of this technology. When fluid phases separated by the membrane are of differing polarity (e.g., oil and water), oil-soluble reagents can be reacted and separated from aqueous-soluble products (and vice versa), further adding to the flexibility of these systems. Membrane reactors have had significant impact in the pharmaceutical industry because of the ability to immobilize enzymes as catalysts to drive biochemical reactions at oil/water interfaces within the membrane. Because enzyme-catalyzed reactions operate under mild conditions and pH, they are considered a green processing approach to the continuous reactive separation of pharmaceuticals. Membrane reactors could also reduce the environmental impact of agricultural fertilizers and herbicides by removing inactive or detrimental chemical species. Such processes could also impact the processing of vegetable oils to form specialty products for consumer products ranging from dietary supplements, infant formulas, pharmaceuticals, cosmetics, food, and beverages. In these systems, however, interfacial area, which determines the rate of reaction, is limited to the oil-water interfaces in the membrane reactor pores. The objective of this research program is to transform the field of membrane-based reactive separations by introducing novel high-interfacial area structures with catalyst-laden interface areas (called bijels) as membrane elements. This material allows multiple key functionalities to occur in a thin layer, with remarkably high oil-water interfacial area estimated to be 100 times larger than conventional membranes. In this project, hydrolysis reactions of triglycerides to produce raw materials such as fatty acids and glycerol will be carried out in a bijel membrane reactor; this is an industrially significant process with an annual U.S. market in excess of $25B.Bijels (bicontinuous interfacially jammed emulsion gels) are formed by quenching a miscible system through a critical point to induce phase separation. This quench occurs in the presence of nanoparticles, which form jammed layers trapped at the interface. High interfacial area is achieved because of the special, bicontinuous arrangement of oil and water in bijel membranes that allows interfacial area to increase with bijel membrane thickness. Furthermore, bijels have a sinuous continuous oil domain adjacent and intertwined with a sinuous, continuous water domain. The interface is stabilized and decorated with nanoparticles that can also support immobilized enzymes. The research team will build on their prior success in fabricating bijels and controlling their internal microstructure via a scalable method termed solvent transfer-induced phase separation (STRIPS). The researchers also will build on their collaboration with Pohang University of Science and Technology in South Korea in which batch mode reactive separation using an enzymatic catalysis was demonstrated. Based on these advances, the project objective is to develop bijel-based membrane reactors to facilitate heterogeneous enzyme-catalyzed reactions of reagents and products of differing polarity for continuous reaction and separation. Membrane reactor performance will be assessed using the lipase-catalyzed reaction of triglycerides with water to form glycerol and fatty acids. Specific aims of the research program include (1) studying the effects of STRIPS processing conditions on bijels; (2) demonstrating the continuous hydrolysis of esters through mathematical modeling and experiments; and (3) reduction of membrane transport limitations to create reaction-rate limited performance. The successful completion of this project will enable process intensification through the use of the novel nanostructured liquid films. The research team will learn how to optimally employ the bijel technology in processes of societal importance, including selective enantiomer production, production of specialty chemicals, pharmaceuticals, and fat splitting. Continuous enzymatic reactive separation in nanostructured bijels could have transformative impact on enantiomeric pharmaceutical production, a class of reactions with significant economic potential.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在可持续制造的社会需求的推动下,化学工艺集约化利用了旨在减少能源需求并最大限度地减少环境影响的工艺。连续同时进行催化反应和分离的膜反应器是该技术的一个重要例子。当膜分离的流体相具有不同极性(例如油和水)时,油溶性试剂可以发生反应并与水溶性产物分离(反之亦然),进一步增加了这些系统的灵活性。膜反应器对制药行业产生了重大影响,因为它能够固定酶作为催化剂,驱动膜内油/水界面的生化反应。由于酶催化反应在温和的条件和 pH 值下进行,因此被认为是药物连续反应分离的绿色加工方法。膜反应器还可以通过去除不活跃或有害的化学物质来减少农业肥料和除草剂对环境的影响。这些过程还可能影响植物油的加工,以形成消费品的特种产品,包括膳食补充剂、婴儿配方奶粉、药品、化妆品、食品和饮料。然而,在这些系统中,决定反应速率的界面面积仅限于膜反应器孔隙中的油水界面。该研究计划的目标是通过引入新型高界面区域结构(以负载催化剂的界面区域(称为 bijels)作为膜元件)来改变基于膜的反应分离领域。这种材料可以在薄层中实现多种关键功能,油水界面面积非常高,估计比传统膜大 100 倍。本项目中,甘油三酯的水解反应将在bijel膜反应器中进行,生产脂肪酸和甘油等原料;这是一个具有工业意义的工艺,每年美国市场超过 25B 美元。Bijels(双连续界面堵塞乳液凝胶)是通过通过临界点淬灭可混溶体系以诱导相分离而形成的。这种猝灭发生在纳米颗粒存在的情况下,纳米颗粒在界面处形成堵塞层。由于 Bijel 膜中油和水的特殊双连续排列,使得界面面积随着 Bijel 膜厚度的增加而增加,因此实现了高界面面积。此外,比耶尔斯具有与蜿蜒连续的水域相邻并交织在一起的蜿蜒连续的油域。该界面被稳定化并用纳米颗粒装饰,纳米颗粒也可以支持固定化酶。研究团队将在之前成功制造 bijels 的基础上,通过一种称为溶剂转移诱导相分离 (STRIPS) 的可扩展方法控制其内部微观结构。研究人员还将与韩国浦项科技大学合作,展示使用酶催化的批量模式反应分离。基于这些进展,该项目的目标是开发基于bijel的膜反应器,以促进不同极性的试剂和产物的非均相酶催化反应,从而实现连续反应和分离。将使用甘油三酯与水的脂肪酶催化反应形成甘油和脂肪酸来评估膜反应器性能。该研究计划的具体目标包括(1)研究 STRIPS 加工条件对 bijels 的影响; (2)通过数学模型和实验演示酯的连续水解; (3)减少膜传输限制以产生反应速率受限的性能。该项目的成功完成将通过使用新型纳米结构液膜实现工艺强化。研究团队将学习如何在具有社会重要性的过程中最佳地利用 bijel 技术,包括选择性对映体生产、特种化学品、药品和脂肪分解的生产。纳米结构双杰尔斯的连续酶反应分离可能会对对映体药物生产产生变革性影响,这是一类具有巨大经济潜力的反应。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fabrication and application of bicontinuous interfacially jammed emulsions gels
- DOI:10.1063/5.0048797
- 发表时间:2021-06
- 期刊:
- 影响因子:15
- 作者:G. Di Vitantonio;Tiancheng Wang;K. Stebe;Daeyeon Lee
- 通讯作者:G. Di Vitantonio;Tiancheng Wang;K. Stebe;Daeyeon Lee
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kathleen Stebe其他文献
Cells Sense and Respond to Curvature by Patterning Stress Fibers and Undergoing Curvature Guided Migration
- DOI:
10.1016/j.bpj.2017.11.3034 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Kathleen Stebe - 通讯作者:
Kathleen Stebe
Kathleen Stebe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kathleen Stebe', 18)}}的其他基金
Active Surface Agents: Enhanced Transport by Active Colloids at Fluid Interfaces
活性表面剂:活性胶体在流体界面处增强传输
- 批准号:
1943394 - 财政年份:2020
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
Curvature gradient driven assembly of trapped and reconfigurable structures
俘获和可重构结构的曲率梯度驱动组件
- 批准号:
1607878 - 财政年份:2016
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
Particle/Protein Interaction and Migration via Anisotropic Membrane Deformation
通过各向异性膜变形实现颗粒/蛋白质相互作用和迁移
- 批准号:
1133267 - 财政年份:2012
- 资助金额:
$ 41.7万 - 项目类别:
Continuing Grant
Drop detachment modes in microfluidics devices
微流体装置中的液滴分离模式
- 批准号:
0651035 - 财政年份:2007
- 资助金额:
$ 41.7万 - 项目类别:
Continuing Grant
MRI/Engineering Equipment Proposal: Acquisition of a Multi-user Imaging Ellipsometer
MRI/工程设备提案:购买多用户成像椭偏仪
- 批准号:
0318241 - 财政年份:2003
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
Evaporating Fluid Microstructures: A Means of Directing Nanoparticle Assembly
蒸发流体微观结构:引导纳米粒子组装的一种方法
- 批准号:
0244592 - 财政年份:2003
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
Measuring the Kinetics of Surfactant Adsorptive - Desorptive Exchange: The Role of Surfactant Structure and Charge
测量表面活性剂吸附-解吸交换动力学:表面活性剂结构和电荷的作用
- 批准号:
9520972 - 财政年份:1996
- 资助金额:
$ 41.7万 - 项目类别:
Continuing Grant
Engineering Research Equipment: Total Internal Reflectance Fluorescence (TIRF) for Bioengineering at Interfaces
工程研究设备:用于界面生物工程的全内反射荧光 (TIRF)
- 批准号:
9500468 - 财政年份:1995
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
U.S.-France Cooperative Research: Characterization of Surfactant Mass Transfer Kinetics and their Impact on Confined Multi-Phase Flows
美法合作研究:表面活性剂传质动力学的表征及其对受限多相流的影响
- 批准号:
9217202 - 财政年份:1993
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
相似海外基金
Levelling up: Cultured meat bioprocess intensification for scalable commercial production
升级:培养肉生物加工强化以实现可扩展的商业生产
- 批准号:
10083870 - 财政年份:2024
- 资助金额:
$ 41.7万 - 项目类别:
Collaborative R&D
CDS&E: Multiscale Process Intensification of Direct Catalytic Hydrogenation of CO2 to Hydrocarbons via Cooperative Tandem Catalysis
CDS
- 批准号:
2245474 - 财政年份:2023
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
Intensification of metallo-enzyme production to unlock sustainable biocatalytic hydrogenation
强化金属酶生产以实现可持续的生物催化氢化
- 批准号:
10065700 - 财政年份:2023
- 资助金额:
$ 41.7万 - 项目类别:
Collaborative R&D
COntinental COnvective OrganisatioN and rainfall intensification in a warming world: Improving storm predictions from hours to decades (COCOON)
变暖世界中的大陆对流组织和降雨强度:将风暴预测从几小时提高到几十年(COCOON)
- 批准号:
NE/X017419/1 - 财政年份:2023
- 资助金额:
$ 41.7万 - 项目类别:
Fellowship
Elucidation of dynamics of complex fluid droplet levitated on high temperature surface and their development into process intensification
阐明高温表面悬浮复杂液滴的动力学及其发展过程强化
- 批准号:
23K13592 - 财政年份:2023
- 资助金额:
$ 41.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Uncovering the Role of Land-Atmosphere Feedbacks on Flash Drought Intensification, Severity, and Expansion
合作研究:揭示陆地-大气反馈对突发干旱加剧、严重程度和扩大的作用
- 批准号:
2303458 - 财政年份:2023
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
Collaborative Research: The Role Of Climate In Agricultural Intensification And Settlement Trends
合作研究:气候在农业集约化和定居趋势中的作用
- 批准号:
2414237 - 财政年份:2023
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the Role of Land-Atmosphere Feedbacks on Flash Drought Intensification, Severity, and Expansion
合作研究:揭示陆地-大气反馈对突发干旱加剧、严重程度和扩大的作用
- 批准号:
2303457 - 财政年份:2023
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
MICA: Pulmonary Hypertension: intensification and personalisation of combination Rx (PHoenix)
MICA:肺动脉高压:联合 Rx 的强化和个性化 (PHoenix)
- 批准号:
MR/W026279/1 - 财政年份:2023
- 资助金额:
$ 41.7万 - 项目类别:
Research Grant
Collaborative Research: Understanding Tropical Cyclone Energetics and Intensification in Environmental Vertical Wind Shear
合作研究:了解热带气旋能量学和环境垂直风切变的强化
- 批准号:
2211308 - 财政年份:2022
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant














{{item.name}}会员




