Quantifying the Polymer Physics of Mechanical Deformation in Ultra-thin Polymer Glasses

量化超薄聚合物玻璃机械变形的聚合物物理

基本信息

  • 批准号:
    1608614
  • 负责人:
  • 金额:
    $ 40.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-01 至 2019-04-30
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARY Numerous technologies rely upon the properties and performance of thin polymer films. For example, membranes used in clean water applications are comprised of thin polymer layers through which water is pushed to separate and remove unwanted contaminants. Although currently useful, this technology remains energetically unfavorable due to engineering limits with regard to the mechanical strength of polymer thin films. Beyond membranes, the efficiency and lifetime of many other applications are also limited by the mechanical properties of polymer thin films; however, direct knowledge of these properties in thin films is extremely limited. Changes in polymer materials when they are processed into films comprised of only a few molecules in thickness are well known, but how these changes impact mechanical strength remains unclear. The proposed project will overcome current challenges with directly measuring mechanical properties in ultra-thin polymers, leading to new fundamental data and knowledge that can help guide the design and synthesis of new materials for better membranes, alternative power sources, as well as many other technologies. The proposed research will provide a strong foundation for the education and training of multiple graduate students and undergraduate researchers. To extend the impact of this project to the K-12 education level, new materials science and engineering curriculum materials will be developed to be integrated into a workshop, called BioInspire!. This program is designed to teach lessons of materials science and engineering and biology in the context of bioinspired innovation, where science, engineering, and art can be used to engage a broad, diverse group of students.TECHNICAL SUMMARYThis project will develop fundamental knowledge of the polymer physics associated with the mechanical properties in ultra-thin films of polymer glasses. Although changes in the mobility of glassy polymer chains in a surface-dominated regime has been studied extensively, the mechanical properties in ultrathin polymer films have only been studied to a limited extent. Here, a new measurement device, called the Ultrathin Film Tensile tester (UFT), will be used to measure the complete stress-strain relationship for polymer thin films under uniaxial extension conditions. The proposed measurements will provide a complete understanding of mechanical responses in ultra-thin polymer films by quantifying elastic and dissipative processes through monotonic and cyclic loading histories across a wide strain and temperature range, as well as controlled fracture experiments in the dimensionally-constrained regime. Three materials systems, including polystyrene (PS), polycarbonate (PC), and blends of polystyrene and poly(2,6-dimethyl-1,4-phenylene oxide) (PS/PPO), will be studied, allowing molecular structure and mechanical responses to be tuned systematically. The findings are expected to provide new insight with regards to how polymer mobility changes near a surface can alter the constitutive response of a polymer, how changes in entanglement density due to dimensional geometric constraints alters fracture mechanisms, and how geometric constraints on polymer molecules may alter the onset of dissipative or plastic deformations. The findings from this project will have a significant impact on fundamental polymer physics, as well as on the development of new characterization methods that can aid the development of advanced materials for thin film applications.
许多技术都依赖于聚合物薄膜的特性和性能。例如,用于净水应用的膜是由薄聚合物层组成的,水通过它被推动分离并去除不需要的污染物。虽然目前很有用,但由于聚合物薄膜机械强度的工程限制,这项技术在能量上仍然不利。除了薄膜,许多其他应用的效率和寿命也受到聚合物薄膜机械性能的限制;然而,对薄膜中这些特性的直接了解是非常有限的。当聚合物材料被加工成只有几个分子厚度的薄膜时,它们的变化是众所周知的,但是这些变化是如何影响机械强度的还不清楚。该项目将克服目前直接测量超薄聚合物机械性能的挑战,带来新的基础数据和知识,有助于指导新材料的设计和合成,以获得更好的膜,替代能源,以及许多其他技术。建议的研究将为多个研究生和本科生研究人员的教育和培训提供坚实的基础。为了将该项目的影响扩展到K-12教育水平,将开发新材料科学和工程课程材料,并将其整合到一个名为“BioInspire!”的研讨会中。该课程旨在在生物启发创新的背景下教授材料科学、工程和生物学课程,科学、工程和艺术可以用来吸引广泛、多样化的学生群体。本项目将发展与超薄聚合物玻璃薄膜机械性能相关的聚合物物理基础知识。虽然玻璃聚合物链在表面占主导地位的迁移率的变化已经被广泛研究,但超薄聚合物薄膜的机械性能只在有限的程度上进行了研究。在这里,一种新的测量设备,称为超薄薄膜拉伸测试仪(UFT),将用于测量聚合物薄膜在单轴拉伸条件下的完整应力-应变关系。所提出的测量将通过在宽应变和温度范围内的单调和循环加载历史,以及在尺寸约束下的受控断裂实验,量化弹性和耗散过程,从而全面了解超薄聚合物薄膜的机械响应。三种材料体系,包括聚苯乙烯(PS),聚碳酸酯(PC),以及聚苯乙烯和聚(2,6-二甲基-1,4-苯乙烯氧化物)(PS/PPO)的共混物,将被研究,允许分子结构和机械响应被系统地调整。这些发现有望为以下方面提供新的见解:表面附近聚合物迁移率的变化如何改变聚合物的本构响应,由于尺寸几何约束而导致的纠缠密度的变化如何改变断裂机制,以及聚合物分子的几何约束如何改变耗散或塑性变形的发生。该项目的研究结果将对基础聚合物物理学产生重大影响,并对新的表征方法的发展产生重大影响,这些方法可以帮助开发用于薄膜应用的先进材料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alfred Crosby其他文献

Alfred Crosby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alfred Crosby', 18)}}的其他基金

EAGER/Collaborative Research: Programmed Stimuli-responsive Mesoscale Polymers Inspired by Worm Blobs as Emergent Super-Materials
EAGER/合作研究:受蠕虫斑点启发的程序化刺激响应介观尺度聚合物作为新兴超级材料
  • 批准号:
    2218119
  • 财政年份:
    2022
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Polymer Adhesion at Extreme Rates and Temperatures
极端速率和温度下的聚合物粘合力
  • 批准号:
    2104410
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Moving with muscles vs. springs: evolutionary biomechanics of extremely fast, small systems
合作研究:肌肉运动与弹簧运动:极快、小型系统的进化生物力学
  • 批准号:
    2019314
  • 财政年份:
    2020
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Structure-Mechanics Relationships for Ultra-thin Block Copolymer Films
合作研究:超薄嵌段共聚物薄膜的结构-力学关系
  • 批准号:
    1904525
  • 财政年份:
    2019
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Controlling Microstructure in Resilin-based Hydrogels: Linking Microscale Mechanical Properties to Behavior
合作研究:控制树脂基水凝胶的微观结构:将微观机械性能与行为联系起来
  • 批准号:
    1609940
  • 财政年份:
    2016
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Size Dependent Mechanical Properties for Elastic Polymer Gels
弹性聚合物凝胶的尺寸依赖性机械性能
  • 批准号:
    1304724
  • 财政年份:
    2013
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
2013 Macromolecular Materials Conference and Seminar
2013年高分子材料会议暨研讨会
  • 批准号:
    1241983
  • 财政年份:
    2012
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Controlled Crumpling of Polymer Thin Films and Nanocomposites
聚合物薄膜和纳米复合材料的受控皱缩
  • 批准号:
    0907219
  • 财政年份:
    2009
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
Symposium on Polymer Surfaces and Interfaces, Chicago, Illinois, March 25-29, 2007
聚合物表面和界面研讨会,伊利诺伊州芝加哥,2007 年 3 月 25-29 日
  • 批准号:
    0704222
  • 财政年份:
    2006
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
MRI: Aquisition of Nano-Imprint Lithography System
MRI:获得纳米压印光刻系统
  • 批准号:
    0521074
  • 财政年份:
    2005
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant

相似国自然基金

大面积polymer-NP-MOFs复合薄膜的构筑及光催化选择性加氢研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CNT网络/Polymer复合材料力学性能的多尺度数值模拟研究
  • 批准号:
    11602270
  • 批准年份:
    2016
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
高阻隔主动包装SiOx/Polymer复合薄膜的磁控共溅射制备及反应路径研究
  • 批准号:
    51302054
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于金纳米颗粒/Polymer复合结构的MEMS嵌入式高灵敏度力敏检测元件基础研究
  • 批准号:
    51105345
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Travel Support: A Short Course on The Polymer Physics of Additive Manufacturing; 2024 American Physical Society (APS) Meeting; Minneapolis, Minnesota; 2-3 March 2024
差旅支持:增材制造聚合物物理短期课程;
  • 批准号:
    2403712
  • 财政年份:
    2024
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Conference: 2024 Polymer Physics GRC and GRS, Role of Molecular Design in Polymer Physics
会议:2024高分子物理GRC和GRS,分子设计在高分子物理中的作用
  • 批准号:
    2402308
  • 财政年份:
    2024
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Bridging Polymer and Glass Physics
桥接聚合物和玻璃物理
  • 批准号:
    2888443
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Studentship
The Polymer Physics of Separation Membranes (A DPOLY Short Course at the 2023 American Physical Society March Meeting)
分离膜的聚合物物理(2023 年美国物理学会三月会议 DPOLY 短期课程)
  • 批准号:
    2310269
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
SBIR Phase I: A Physics-Informed/Encoded Polymer Informatics Platform for Accelerated Development of Advanced Polymers and Formulations
SBIR 第一阶段:物理信息/编码聚合物信息学平台,用于加速先进聚合物和配方的开发
  • 批准号:
    2322108
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Soft matter physics of polymer-based materials and proteins
聚合物基材料和蛋白质的软物质物理学
  • 批准号:
    RGPIN-2016-03982
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Discovery Grants Program - Individual
2020 Polymer Physics GRC/GRS
2020年高分子物理GRC/GRS
  • 批准号:
    2021588
  • 财政年份:
    2020
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Coupled map lattice for phase inversion from cream to butter: towards understanding food texture formation based on polymer and nonlinear physics
用于从奶油到黄油的相转化的耦合图晶格:基于聚合物和非线性物理学理解食物质地的形成
  • 批准号:
    20J12074
  • 财政年份:
    2020
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Towards the predictive design of PAEK-based polymers - from fundamental polymer physics to advanced materials applications
迈向 PAEK 基聚合物的预测设计 - 从基础聚合物物理到先进材料应用
  • 批准号:
    2508292
  • 财政年份:
    2020
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Studentship
Soft matter physics of polymer-based materials and proteins
聚合物基材料和蛋白质的软物质物理学
  • 批准号:
    RGPIN-2016-03982
  • 财政年份:
    2020
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了