Printed Plastic Low-Power NDR Electronics for the Internet of Everything
用于万物互联的印刷塑料低功耗 NDR 电子产品
基本信息
- 批准号:1609299
- 负责人:
- 金额:$ 47.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract: Non-technical: The team at Ohio State University, through an accidental discovery under NSF, is undergraduate research funding, developed and advanced a new organic tunnel diode using a hybrid junction incorporating a thin metal oxide and a solution-based organic semiconductor atop. This patented device is the first such structure to genuinely exhibit selective tunneling at room temperature using a scalable printable process. The current versus voltage characteristics are unique amongst semiconductor devices, looking like a capital letter (N). So, unlike most devices, a line drawn through this (N) provides three intersections. The middle is unstable and unusable, but the first and third provide for a simple way to store 1-bit, a (0) or a (1), using a single tunnel diode with another circuit element, such as a second tunnel diode or transistor, as the load. This project builds upon previous advances by building a multi-institutional team (Wayne State University, Tampere University of Technology, Aalto University and Picosun) spanning two countries (USA and Finland). The properties of this thin metal oxide tunneling barrier are key to the discovered operation. This project seeks a new way to deposit this layer that would permit large area deposition across flexible substrates, reaching a meter wide. Through collaborations with Finnish industry, we will increase the competitiveness and position of US industry and advance the intelligence and functionality of organic electronics, solar cells, electronic printing and atomic layer deposition technology. Participation of industry and international collaborators will broaden the culture of innovation and focus the research output towards strategic commercialization. Technical: Ohio State University (OSU) proposes a 3-year bi-national (USA, Finland) project to advance printed organic electronics, particularly using organic tunnel diodes (OTD) and circuits integrated with organic field effect transistors (OFET). Their unique negative differential resistance (NDR) will reduce OFET device count, while concurrently reducing power consumption. Energy thrifty circuits will be key for autonomously powered sensor nodes for a dense network of trillions of objects for the Internet of Things (IoT). International teaming with Tampere Univ. of Technology (TUT-Finland) and Picosun (Finland), an atomic layer deposition (ALD) tool manufacturer, will provide collaborative opportunities for large-area rapid roll-to-roll (R2R) technologies to prototypical scale-up of the existing fundamental studies while enhancing materials discovery and understanding. A key aim of this project is working with Wayne State University (WSU) for novel ALD precursor and oxidizer discovery and process development to explore non-stoichiometric ALD for metal oxide tunnel barriers with engineering oxygen vacancies (energy level of defects, density-of-states, etc.) that critically control OTD defect related tunneling processes and therefore device performance based on NDR. Advances by this team for the first conjugated polymer based tunnel diode circuitry using room temperature NDR enable new opportunities for low-power consumption portable circuitry (logic, memory and mixed-signal). NDR circuitry can provide (i) component count reduction (more computational power per unit area), (ii) lower power consumption (fewer devices per logic function). Tremendous benefits to society and humankind: 1) Low-cost, ultra-low power autonomous plastic electronic memory, logic and wireless systems; 2) Advanced high-K dielectrics compatible with the limited thermal budget of organics; 3) Understanding of defects and their role in tunneling transport through thin high-K dielectrics; 4) Large-area, R2R electronic printing for high volume production. Students and international exchange: A full-time graduate student will be directly supported here. REU supplements will supplement this team with 1-2 undergraduates, along with international scientific visitations.
摘要:非技术性:俄亥俄州立大学的团队通过在NSF下的一次偶然发现,资助了本科生的研究,开发并改进了一种新的有机隧道二极管,该二极管使用混合结,其中包括薄金属氧化物和基于溶液的有机半导体。这种获得专利的器件是第一个使用可扩展可打印工艺在室温下真正展示选择性隧道效应的此类结构。电流-电压特性在半导体设备中是独一无二的,看起来像大写字母(N)。因此,与大多数设备不同的是,通过这个(N)绘制的一条线提供了三个交点。中间层不稳定且不可用,但第一层和第三层提供了一种存储1位、a(0)或a(1)的简单方法,使用单个隧道二极管和另一个电路元件(如第二个隧道二极管或晶体管)作为负载。该项目通过建立一个跨越两个国家(美国和芬兰)的多机构团队(韦恩州立大学、坦佩雷理工大学、阿尔托大学和皮科森大学),在以往进展的基础上再接再厉。这种薄薄的金属氧化物隧道势垒的性质是所发现的操作的关键。该项目寻求一种新的沉积方法来沉积这一层,允许在柔性基板上大面积沉积,达到一米宽。通过与芬兰工业界的合作,我们将提高美国工业的竞争力和地位,推进有机电子、太阳能电池、电子印刷和原子层沉积技术的智能化和功能性。业界和国际合作者的参与将扩大创新文化,并将研究成果集中于战略商业化。技术:俄亥俄州立大学(OSU)提出了一项为期3年的两国(美国、芬兰)项目,以促进印刷有机电子技术的发展,特别是使用有机隧道二极管(OTD)和与有机场效应晶体管(OFET)集成的电路。其独特的负差分电阻(NDR)将减少OFET器件数量,同时降低功耗。节能电路将是自动供电传感器节点的关键,用于物联网(IoT)数万亿对象的密集网络。与坦佩雷大学的国际合作。芬兰图坦卡蒙理工学院与原子层沉积(ALD)工具制造商Picosun(芬兰)合作,将为大面积快速滚转(R2R)技术提供合作机会,以扩大现有基础研究的典型规模,同时增进材料的发现和理解。该项目的一个主要目标是与韦恩州立大学(WSU)合作,开发新型的ALD前体和氧化剂,并开发工艺,以探索用于具有工程氧空位(缺陷能级、态密度等)的金属氧化物隧道势垒的非化学计量比ALD。关键控制与OTD缺陷相关的隧道过程,从而基于NDR的器件性能。该团队在使用室温NDR的第一个基于共轭聚合物的隧道二极管电路方面取得的进展,为低功耗便携式电路(逻辑、存储器和混合信号)带来了新的机遇。NDR电路可以提供(I)组件数量减少(更多单位面积的计算能力),(Ii)更低的功耗(每个逻辑功能的器件更少)。为社会和人类带来的巨大好处:1)低成本、超低功耗的自主塑料电子存储、逻辑和无线系统;2)兼容有限的有机物热预算的先进的高K电介质;3)了解缺陷及其在通过薄的高K电介质进行隧道传输中的作用;4)用于大批量生产的大面积R2R电子印刷。留学生和国际交流:全日制研究生将在这里得到直接支持。REU补充剂将为这个团队补充1-2名本科生,以及国际科学访问。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Berger其他文献
Complex interaction of cocaine with the dopamine uptake carrier.
可卡因与多巴胺摄取载体的复杂相互作用。
- DOI:
10.1016/0014-2999(90)90540-m - 发表时间:
1990 - 期刊:
- 影响因子:5
- 作者:
Paul Berger;J. Elsworth;Maarten E. A. Reith;David A. Tanen;R. H. Roth - 通讯作者:
R. H. Roth
PS122. Negative Pressure Wound Therapy on Exposed Prosthetic Vascular Grafts in the Groin
- DOI:
10.1016/j.jvs.2012.03.155 - 发表时间:
2012-06-01 - 期刊:
- 影响因子:
- 作者:
Paul Berger;Dennis de Bie;Frans L. Moll;Gert-Jan de Borst - 通讯作者:
Gert-Jan de Borst
“It is not something that has been discussed”: Climate change in teacher education in Greenland and Canada
“这不是已经讨论过的事情”:格陵兰岛和加拿大教师教育的气候变化
- DOI:
10.1080/10899995.2020.1858265 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Lars Demant;Paul Berger - 通讯作者:
Paul Berger
1427 ISOLATED CEREBRAL VENTRICULAR DILATATION (VD) OF LOW BIRTH WEIGHT (LBW) NEONATE AND ITS SIGNIFICANCE
1427 例低出生体重儿孤立性脑室扩张(VD)及其意义
- DOI:
10.1203/00006450-198504000-01451 - 发表时间:
1985-04-01 - 期刊:
- 影响因子:3.100
- 作者:
Young M Kim;Mehmet Y Dincsoy;Mamerto Garcia;Paul Berger;Susan Tuck;Norman L Gootman - 通讯作者:
Norman L Gootman
Indigenous Student Success in Public Schools: A “We” Approach for Educators
原住民学生在公立学校的成功:教育工作者的“我们”方法
- DOI:
10.55016/ojs/ajer.v62i1.55971 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
M. Moon;Paul Berger - 通讯作者:
Paul Berger
Paul Berger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Berger', 18)}}的其他基金
EAGER Collaborative: >100 GHz Optical Clocking using Self-Modulation of Co-Tunneling Light Emitters
渴望协作:
- 批准号:
1848872 - 财政年份:2018
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Collaborative Proposal: RTD-based Relaxation Oscillators (RTD-RO) to Increase Output Power and Overcome DC Stability Issues
协作提案:基于 RTD 的弛豫振荡器 (RTD-RO),以提高输出功率并克服直流稳定性问题
- 批准号:
1711733 - 财政年份:2017
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
GOALI: Plasmonically Enhanced Bulk Heterojunction Organic Photovoltaics
目标:等离激元增强体异质结有机光伏
- 批准号:
1202465 - 财政年份:2012
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
GOALI: Passive Millimeter-Wave Imaging Using Monolithic Si-based Square-Law Detectors for Security and Transportation Safety
GOALI:使用单片硅基平方律探测器进行被动毫米波成像,确保安全和运输安全
- 批准号:
1028650 - 财政年份:2010
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Conjugated Polymer Tunneling Devices for Plastic Electronic Memory
用于塑料电子存储器的共轭聚合物隧道器件
- 批准号:
1002240 - 财政年份:2010
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
GOALI: RF Performance of Si-Based RITD for Mixed-Signal Applications
目标:用于混合信号应用的硅基 RITD 的射频性能
- 批准号:
0323657 - 财政年份:2003
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
SGER: Conjugated Polymer Transistors Based on Highly Oriented Structures for Active-Matrix Light Emitting Polymer Displays
SGER:基于高度定向结构的共轭聚合物晶体管,用于有源矩阵发光聚合物显示器
- 批准号:
0097155 - 财政年份:2001
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
NIRT: Self-Aligned and Self-Limited Quantum Dot Nanoswitches
NIRT:自对准和自限制量子点纳米开关
- 批准号:
0103248 - 财政年份:2001
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
Si-Based Interband Tunneling Diodes for High-Speed Logic and Low Power Memory Applications
用于高速逻辑和低功耗存储器应用的硅基带间隧道二极管
- 批准号:
0196208 - 财政年份:2000
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Acquisition of Equipment for Polymeric Electroactive Materials Research and Education
购置高分子电活性材料研究和教育设备
- 批准号:
0196040 - 财政年份:2000
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
相似海外基金
From Low-Grade Plastic Waste Into Timber Substitutes - Dynamic Quality Control for Mixed & Film-Based Streams
从低品位塑料废物到木材替代品 - 混合动态质量控制
- 批准号:
10059430 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Collaborative R&D
Redeveloping Xampla’s plant-based and biodegradable resin (TRL4-6) to access low cost, high-volume plastic film markets
重新开发 Xampla 的植物基可生物降解树脂 (TRL4-6),以进入低成本、大批量的塑料薄膜市场
- 批准号:
10062008 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Collaborative R&D
Roofing Tiles from Low-Grade Plastic Streams: Product Design for Scalable Manufacturing
由低级塑料流制成的屋顶瓦:可扩展制造的产品设计
- 批准号:
10046411 - 财政年份:2022
- 资助金额:
$ 47.5万 - 项目类别:
Grant for R&D
A novel AI machine learning tool to maximise productivity and profitability for plastics recyclers and improve commercial viability of currently unrecyclable, low grade recovered polymer; reducing plastic waste by 283kt/annum and emissions by 870kt/annum.
一种新颖的人工智能机器学习工具,可最大限度地提高塑料回收商的生产力和盈利能力,并提高目前不可回收的低品级回收聚合物的商业可行性;
- 批准号:
87747 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别:
Collaborative R&D
Development of innovative chemical recycling system of plastic waste via low-temperature reforming
通过低温重整开发创新的塑料废物化学回收系统
- 批准号:
20K21856 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
PFI-RP: Translational Research from Academia to Industry on Low Cost Plastic Materials for Infrared Thermal Imaging
PFI-RP:用于红外热成像的低成本塑料材料从学术界到工业界的转化研究
- 批准号:
1940942 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Development of high sensitive magnetometer and Ultra Low Field MRI System for plastic contaminant detectrion
开发用于塑料污染物检测的高灵敏度磁力计和超低场MRI系统
- 批准号:
19H02153 - 财政年份:2019
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Constraining Frictional and Low-Temperature Plastic Rheology of Oceanic Lithosphere by Modeling Observations of Load-Induced Deformation from the Hawaiian Islands to Japan Trench
通过模拟从夏威夷群岛到日本海沟的荷载引起的变形观测来约束海洋岩石圈的摩擦和低温塑性流变
- 批准号:
1940026 - 财政年份:2019
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Development of a method for low-temperature fabrication of crystalline n-type germanium layers on plastic substrates with a gold catalyst
开发一种用金催化剂在塑料基板上低温制造晶体 n 型锗层的方法
- 批准号:
19K15458 - 财政年份:2019
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of hydrogen, vacancy, and plastic-strain related fracture phenomena in low-alloy steels by trans-scale analyses
通过跨尺度分析阐明低合金钢中氢、空位和塑性应变相关的断裂现象
- 批准号:
19H02025 - 财政年份:2019
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




