Geometric Analysis on Complex Manifolds
复杂流形的几何分析
基本信息
- 批准号:1610278
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator's research concerns the study of complex manifolds, which are higher-dimensional curved spaces that are defined using the complex numbers. The simplest examples of such spaces are called Riemann surfaces, which are complex manifolds with one complex dimension (and therefore two real dimensions), and include the familiar surfaces of the sphere and of a donut. Higher-dimensional complex manifolds include for example Calabi-Yau manifolds, which are a fundamental tool in string theory. Complex manifolds are ubiquitous objects in mathematics, and have wide-ranging applications in physics and engineering. The proposed research projects will expand our knowledge of the geometry of higher-dimensional complex manifolds using analytic techniques, and in particular partial differential equations (PDEs). These projects lie at the intersection of several mathematical disciplines, such as differential, algebraic and symplectic geometry, complex analysis and PDEs, and techniques from all these fields are necessary to attack them. Progress on these questions will not only shed some light on some basic problems in mathematics, but will also have applications in physics and other sciences.The principal investigator proposes to use techniques from geometric analysis and nonlinear partial differential equations to investigate problems about the geometry of complex manifolds. The first project is about applications of analysis to the construction of currents on complex manifolds, which are used to study the geometry of (1,1) cohomology classes on compact Kahler manifolds. In the second project the principal investigator will develop new analytic techniques to construct special metrics on non-Kahler complex manifolds, by solving Monge-Ampere equations for (n-1,n-1) forms, building upon earlier work of the principal investigator with Szekelyhidi and Weinkove which culminated in the solution of Gauduchon's conjecture. The third project is about understanding collapsed limits of Ricci-flat Calabi-Yau manifolds. This is closely related to the theory of mirror symmetry, which was inspired by physical considerations. The fourth project is centered on Donaldson's program to extend Yau's solution of the Calabi Conjecture in Kahler geometry to symplectic four manifolds, and to its applications to symplectic topology.
首席研究员的研究涉及复流形的研究,复流形是使用复数定义的高维弯曲空间。这种空间的最简单的例子叫做黎曼曲面,它是具有一个复维(因此是两个真实的维)的复流形,包括我们熟悉的球面和圆环面。更高维的复流形包括例如卡拉比-丘流形,它是弦理论中的基本工具。复流形是数学中普遍存在的对象,在物理和工程中有着广泛的应用。拟议的研究项目将扩大我们的知识的几何高维复杂的流形使用分析技术,特别是偏微分方程(PDE)。这些项目位于几个数学学科的交叉点,如微分,代数和辛几何,复杂的分析和偏微分方程,以及来自所有这些领域的技术是必要的攻击他们。这些问题的研究进展不仅有助于揭示数学中的一些基本问题,而且还将在物理学和其他科学中得到应用。主要研究者建议使用几何分析和非线性偏微分方程的技术来研究复流形的几何问题。第一个项目是关于应用分析来构造复流形上的流,这是用来研究紧致Kahler流形上的(1,1)上同调类的几何。在第二个项目中,首席研究员将开发新的分析技术,通过求解Monge-Ampere方程的(n-1,n-1)形式,在首席研究员与Szekelyhidi和Weinkove的早期工作的基础上,在非Kahler复流形上构建特殊度量,最终解决了Gauduchon猜想。第三个项目是关于理解Ricci平坦Calabi-Yau流形的坍缩极限。这与镜像对称理论密切相关,镜像对称理论的灵感来自于物理考虑。第四个项目是集中在唐纳森的计划,以延长丘的解决方案的卡拉比猜想在Kahler几何辛四流形,及其应用辛拓扑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valentino Tosatti其他文献
Diameter bounds for degenerating Calabi–Yau metrics
退化 Calabi-Yau 度量的直径界限
- DOI:
10.4310/jdg/1717772422 - 发表时间:
2020 - 期刊:
- 影响因子:2.5
- 作者:
Yang Li;Valentino Tosatti - 通讯作者:
Valentino Tosatti
Smooth and Rough Positive Currents
平滑和粗糙的正电流
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Simion Filip;Valentino Tosatti - 通讯作者:
Valentino Tosatti
Restricted volumes on Kähler manifolds
Kähler 歧管的容量限制
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Tristan C. Collins;Valentino Tosatti - 通讯作者:
Valentino Tosatti
The Calabi-Yau equation, symplectic forms and almost complex structures
卡拉比-丘方程、辛形式和近复结构
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Valentino Tosatti;B. Weinkove - 通讯作者:
B. Weinkove
Corrigendum to "Convergence of curve shortening flow to translating soliton"
“曲线缩短流与平移孤子的收敛性”的勘误表
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:1.7
- 作者:
Beomjun Choi;K. Choi;P. Daskalopoulos;Oran Gannot;Jared Wunsch;Andrew Corbett;Huabin Ge;Bobo Hua;Ze Zhou;Simion Filip;Valentino Tosatti;F. Plinio;Ioannis Parissis;Paolo Aluffi;Zihua Guo;Kenji Nakanishi;Asher Auel;Alessandro Bigazzi;C. Böhning;H. G. Bothmer;Dimitrios Ntalampekos;Matthew Romney - 通讯作者:
Matthew Romney
Valentino Tosatti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valentino Tosatti', 18)}}的其他基金
Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
- 批准号:
2231783 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
- 批准号:
1903147 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Geometry and Analysis on Calabi-Yau and Hermitian Manifolds
Calabi-Yau 和 Hermitian 流形的几何与分析
- 批准号:
1308988 - 财政年份:2013
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Great Lakes Geometry Conference 2013
2013 年五大湖几何会议
- 批准号:
1301714 - 财政年份:2012
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Partial Differential Equations on Complex and Symplectic Manifolds
复流形和辛流形上的偏微分方程
- 批准号:
1236969 - 财政年份:2012
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Partial Differential Equations on Complex and Symplectic Manifolds
复流形和辛流形上的偏微分方程
- 批准号:
1005457 - 财政年份:2010
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
New development of geometric complex analysis based on L2 estimates and L2 extension theorems
基于L2估计和L2可拓定理的几何复形分析新进展
- 批准号:
23K12978 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometric Methods in Complex Analysis
复杂分析中的几何方法
- 批准号:
RGPIN-2020-04432 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual
An upgraded optical coordinate measurement machine for the dimensional analysis of complex geometric devices
升级版光学坐标测量机,用于复杂几何装置的尺寸分析
- 批准号:
RTI-2023-00109 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Research Tools and Instruments
Geometric Methods in Complex Analysis
复杂分析中的几何方法
- 批准号:
RGPIN-2020-04432 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual
RUI: Spectral Theory and Geometric Analysis in Several Complex Variables
RUI:多个复杂变量的谱理论和几何分析
- 批准号:
2055538 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Geometric analysis on complex manifolds
复杂流形的几何分析
- 批准号:
20H00116 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Geometric Methods in Complex Analysis
复杂分析中的几何方法
- 批准号:
RGPIN-2020-04432 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual
Geometric Methods in Complex Analysis
复杂分析中的几何方法
- 批准号:
RGPIN-2015-04765 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual
Geometric Methods in Complex Analysis
复杂分析中的几何方法
- 批准号:
RGPIN-2015-04765 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual
Geometric Methods in Complex Analysis
复杂分析中的几何方法
- 批准号:
RGPIN-2015-04765 - 财政年份:2017
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual