Partial Differential Equations on Complex and Symplectic Manifolds

复流形和辛流形上的偏微分方程

基本信息

  • 批准号:
    1236969
  • 负责人:
  • 金额:
    $ 3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

The PI proposed research focuses on several basic problems related to the geometry of complex and symplectic manifolds, which can be studied using nonlinear PDEs. In the first project the PI will study a recent conjecture of Donaldson that aims at extending Yau's theorem in Kahler geometry to symplectic four-manifolds, building on his work with Weinkove and Yau. If proved, this conjecture would provide a powerful new tool to construct symplectic forms on compact symplectic four-manifolds, and would have striking applications to symplectic topology. The second project regards the geometry of compact Calabi-Yau manifolds, and specifically the way in which Ricci-flat Kahler metrics on a Calabi-Yau manifold can degenerate when their cohomology class approaches the boundary of the Kahler cone. These degenerations have also been studied by string theorists in connection with mirror symmetry. The PI proposes to continue his study of these degenerations, as well as investigating Ricci-flat metrics on a family of quintic threefolds near a large complex structure limit. The third project falls in the area of canonical metrics on compact Kahler manifolds, such as Kahler-Einstein or constant scalar curvature Kahler metrics. It is believed that the existence of such canonical metrics should be equivalent to the algebraic stability of the manifold. The PI will study this using two natural evolution equations associated to these problems, the Kahler-Ricci flow and the Calabi flow, with the aim of connecting the limiting behaviour of the flows to algebraic stability through the use of natural energy functionals. The final project also involves canonical Kahler metrics, and more specifically the problem of existence of constant scalar curvature Kahler metrics on complex surfaces with ample canonical bundle in cohomology classes that are known to be stable.Most of the problems that we will consider, for example the Einstein equations, were originally discovered by physicists who were searching for models of the fundamental laws of nature. More recently, geometric aspects closely related to the proposed research have found applications in high energy physics, and are being used to deepen our understanding of the Universe and of elementary particles. The geometric ideas of the PI's research revolve around the problem of finding the optimal shape of a geometric space, the one with the largest possible symmetry, and understanding the possible singularities that form in spaces where such an optimal shape does not exist. Any progress on these questions will not only shed some light on some basic problems in mathematics, but will also have applications in physics and other sciences.
PI提出的研究重点是与复杂和辛流形几何相关的几个基本问题,这些问题可以用非线性偏微分方程来研究。在第一个项目中,PI将研究Donaldson最近的一个猜想,该猜想旨在将Yau的Kahler几何定理扩展到辛四流形,以他与Weinkove和Yau的工作为基础。如果得到证明,这一猜想将为在紧辛四流形上构造辛形式提供一个强有力的新工具,并将在辛拓扑上有显著的应用。第二个项目涉及紧化Calabi-Yau流形的几何,特别是Calabi-Yau流形上的Ricci-flat Kahler度量在其上同调类接近Kahler锥边界时退化的方式。弦理论家也研究了这些退化与镜像对称的关系。PI建议继续他对这些退化的研究,以及在大型复杂结构极限附近的五次三倍族上研究里奇平坦度量。第三个项目属于紧化Kahler流形上的规范度量领域,例如Kahler- einstein或常数标量曲率Kahler度量。认为这种规范度量的存在性等价于流形的代数稳定性。PI将使用与这些问题相关的两个自然演化方程,Kahler-Ricci流和Calabi流来研究这个问题,目的是通过使用自然能量泛函将流动的极限行为与代数稳定性联系起来。最后的项目还涉及正则Kahler度量,更具体地说,在已知稳定的上同调类中具有充足正则束的复杂表面上存在常数标量曲率Kahler度量的问题。我们将要考虑的大多数问题,比如爱因斯坦方程,最初都是由寻找自然基本定律模型的物理学家发现的。最近,与提出的研究密切相关的几何方面已经在高能物理学中找到了应用,并被用来加深我们对宇宙和基本粒子的理解。PI研究的几何思想围绕着寻找几何空间的最佳形状的问题,即具有最大可能对称性的形状,以及理解在不存在这种最佳形状的空间中可能形成的奇点。在这些问题上取得的任何进展不仅会对数学中的一些基本问题有所启发,而且还会在物理学和其他科学中得到应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Valentino Tosatti其他文献

Diameter bounds for degenerating Calabi–Yau metrics
退化 Calabi-Yau 度量的直径界限
  • DOI:
    10.4310/jdg/1717772422
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Yang Li;Valentino Tosatti
  • 通讯作者:
    Valentino Tosatti
The Calabi-Yau equation, symplectic forms and almost complex structures
卡拉比-丘方程、辛形式和近复结构
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Valentino Tosatti;B. Weinkove
  • 通讯作者:
    B. Weinkove
Corrigendum to "Convergence of curve shortening flow to translating soliton"
“曲线缩短流与平移孤子的收敛性”的勘误表
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Beomjun Choi;K. Choi;P. Daskalopoulos;Oran Gannot;Jared Wunsch;Andrew Corbett;Huabin Ge;Bobo Hua;Ze Zhou;Simion Filip;Valentino Tosatti;F. Plinio;Ioannis Parissis;Paolo Aluffi;Zihua Guo;Kenji Nakanishi;Asher Auel;Alessandro Bigazzi;C. Böhning;H. G. Bothmer;Dimitrios Ntalampekos;Matthew Romney
  • 通讯作者:
    Matthew Romney
Restricted volumes on Kähler manifolds
Kähler 歧管的容量限制
Smooth and Rough Positive Currents
平滑和粗糙的正电流
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simion Filip;Valentino Tosatti
  • 通讯作者:
    Valentino Tosatti

Valentino Tosatti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Valentino Tosatti', 18)}}的其他基金

Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
  • 批准号:
    2231783
  • 财政年份:
    2022
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
  • 批准号:
    1903147
  • 财政年份:
    2019
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
Geometric Analysis on Complex Manifolds
复杂流形的几何分析
  • 批准号:
    1610278
  • 财政年份:
    2016
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
Geometry and Analysis on Calabi-Yau and Hermitian Manifolds
Calabi-Yau 和 Hermitian 流形的几何与分析
  • 批准号:
    1308988
  • 财政年份:
    2013
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Great Lakes Geometry Conference 2013
2013 年五大湖几何会议
  • 批准号:
    1301714
  • 财政年份:
    2012
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Partial Differential Equations on Complex and Symplectic Manifolds
复流形和辛流形上的偏微分方程
  • 批准号:
    1005457
  • 财政年份:
    2010
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
  • 批准号:
    2348846
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
A new numerical analysis for partial differential equations with noise
带有噪声的偏微分方程的新数值分析
  • 批准号:
    DP220100937
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Discovery Projects
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
  • 批准号:
    2307610
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了