Nanostructured materials for photonics and spectroscopy

用于光子学和光谱学的纳米结构材料

基本信息

  • 批准号:
    1610953
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-15 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Title: Materials with reduced dimensions for light detection.Non-technical: Materials with a layered structure similar to graphite, where the atoms within each layer are strongly bonded, but the layers are weakly coupled and can be easily separated, have become the focus of intense research efforts worldwide. This is because it is now possible to reduce their thickness down to a few or even a single layer to create atomically thin devices or transparent conductors that are suitable for flexible substrates. However, the full potential of their drastic reduction in thickness and their new physical properties has not been realized. This project focuses on the study and applications of novel photodetectors based on graphene, a single layer of graphite, and single-layer MoS2. The PI will further reduce their dimensions by patterning single layers into structures that are just tens of nanometers wide, to create high-performance photodetectors that will work in the visible range, as well as in other regions of the electromagnetic spectrum, including terahertz radiation. Terahertz radiation comprises the electromagnetic spectrum between microwave and infrared radiation, in the frequency range between 100 GHz and 30 THz. Because it can penetrate through most plastics and non-conducting materials without the damaging ionization effects of x-rays, it has promising potential applications for security and medical imaging. Other applications include chemical fingerprinting (to identify chemical compounds), communication, either terrestrial short-range or between satellites, and imaging of blackbody radiation emitted by the landscape, to allow aircraft to land in conditions of poor visibility due to fog or smoke. Notwithstanding the potential for application in many fields, terahertz technology is far from advanced, because powerful sources and sensitive detectors are scarce. This project builds on previous work by the PI demonstrating that nanometer-patterning of graphene yields terahertz detectors with extraordinary performance.Technical: Graphene has material properties that are ideal for bolometric application: small electronic heat capacity and weak electron-phonon coupling, making it easy to create hot electrons with the incident electromagnetic radiation. This project will build on recent work by the PI who demonstrated that graphene quantum dots can yield extremely high-performance THz bolometers. This was done by measuring the current of hot electrons formed in the graphene source and drain electrodes and propagating through the graphene quantum dot. New work will extend the study to gated quantum dot bolometers to better understand the underlying physics of their extraordinary performance. This study will include the frequency and power dependence of their response and the coupling of these bolometers to antennas. In addition to graphene, hybrid structures based on graphene and MoS2 will also be investigated for hot-electron bolometer applications. Finally, this project will investigate detection of visible radiation in nanopatterned MoS2-based photosensors.
标题:用于光探测的缩小尺寸材料。非技术:具有类似石墨的层状结构的材料,每层内的原子紧密结合,但各层之间的耦合很弱,很容易分离,已经成为世界范围内激烈研究的焦点。这是因为现在有可能将它们的厚度减少到几层甚至单层,以创建适合柔性基板的原子薄器件或透明导体。然而,它们的厚度急剧减少和新的物理性质的全部潜力尚未实现。本项目主要研究基于石墨烯、单层石墨和单层二硫化钼的新型光电探测器的研究和应用。PI将进一步缩小它们的尺寸,通过将单层图案化成只有几十纳米宽的结构,来创造高性能的光电探测器,它将在可见范围内工作,也可以在电磁频谱的其他区域工作,包括太赫兹辐射。太赫兹辐射包括微波和红外辐射之间的电磁频谱,频率范围在100千兆赫和30太赫兹之间。由于它可以穿透大多数塑料和非导电材料,而不会产生x射线的破坏性电离效应,因此它在安全和医学成像方面具有很好的潜在应用前景。其他应用包括化学指纹识别(用于识别化合物)、地面短距离或卫星间的通信,以及对景观发出的黑体辐射进行成像,使飞机能够在因雾或烟而能见度较低的情况下着陆。尽管太赫兹技术在许多领域都有应用潜力,但它还远远不够先进,因为强大的光源和灵敏的探测器都很稀缺。该项目建立在PI先前的工作基础上,证明石墨烯的纳米图案化产生了具有非凡性能的太赫兹探测器。技术:石墨烯具有理想的材料特性:小的电子热容量和弱的电子-声子耦合,使得它很容易与入射的电磁辐射产生热电子。该项目将建立在PI最近的工作基础上,该工作证明石墨烯量子点可以产生非常高性能的太赫兹辐射热计。这是通过测量在石墨烯源极和漏极形成并通过石墨烯量子点传播的热电子的电流来完成的。新的工作将把研究扩展到门控量子点辐射热计,以更好地了解其非凡性能的潜在物理原理。本研究将包括其响应的频率和功率依赖性以及这些辐射热计与天线的耦合。除了石墨烯,基于石墨烯和二硫化钼的混合结构也将被研究用于热电子辐射热计的应用。最后,本项目将研究基于二硫化钼的纳米图案光传感器的可见辐射检测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paola Barbara其他文献

Signatures of Floquet electronic steady states in graphene under continuous-wave mid-infrared irradiation
连续波中红外辐射下石墨烯中 Floquet 电子稳态的特征
  • DOI:
    10.1038/s41467-025-57335-2
  • 发表时间:
    2025-02-28
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Yijing Liu;Christopher Yang;Gabriel Gaertner;John Huckabee;Alexey V. Suslov;Gil Refael;Frederik Nathan;Cyprian Lewandowski;Luis E. F. Foa Torres;Iliya Esin;Paola Barbara;Nikolai G. Kalugin
  • 通讯作者:
    Nikolai G. Kalugin
Fabrication and properties of vertically stacked <em>Nb/Al <img class="glyph" src="https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/16/entities/sbnd" /> AlOχ/Nb</em> Josephson tunnel junctions
  • DOI:
    10.1016/s0011-2275(05)80211-5
  • 发表时间:
    1994-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lucia Capogna;Giovanni Costabile;Paola Barbara;Nadia Martucciello;Roberto Monaco
  • 通讯作者:
    Roberto Monaco

Paola Barbara的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paola Barbara', 18)}}的其他基金

Effects of Quantum Confinement in Photosensors from Transition Metal Dichalcogenides
过渡金属二硫化物光电传感器中的量子限制效应
  • 批准号:
    2132098
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative research: Floquet-Bloch topological states in quantum Hall systems
合作研究:量子霍尔系统中的Floquet-Bloch拓扑态
  • 批准号:
    2104770
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Material World Network: SWCNT Sensors: Interplay Between Schottky Barrier and Gas Adsorption
材料世界网:SWCNT 传感器:肖特基势垒与气体吸附之间的相互作用
  • 批准号:
    1008242
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: Coherent Transport in the One-Dimensional limit
合作研究:一维极限下的相干传输
  • 批准号:
    0907220
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Field Emission Scanning Electron Microscope for Imaging and Electron-Beam Nanolithography
MRI:获取场发射扫描电子显微镜用于成像和电子束纳米光刻
  • 批准号:
    0521170
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
PECASE: Superconductor/Carbon-Nanotube Junctions and Interfaces
PECASE:超导体/碳纳米管结和界面
  • 批准号:
    0239721
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

CuAgSe基热电材料的结构特性与构效关系研究
  • 批准号:
    22375214
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
碳/碳复合材料膺复体仿生喉气管重建动物模型建立
  • 批准号:
    51172002
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
Journal of Materials Science & Technology
  • 批准号:
    51024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
天然生物材料的多尺度力学与仿生研究
  • 批准号:
    10732050
  • 批准年份:
    2007
  • 资助金额:
    200.0 万元
  • 项目类别:
    重点项目
均匀纳米孔低介电材料的可控制备研究
  • 批准号:
    90606011
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    重大研究计划
一维和二维的可调谐特异性电介质材料
  • 批准号:
    50477048
  • 批准年份:
    2004
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

Digital photonics exploiting optical nonlinearities of low-dimensional nano-materials
利用低维纳米材料光学非线性的数字光子学
  • 批准号:
    23H00174
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
AI-accelerated optical simulation for fast timing nuclear imaging
用于快速核成像的人工智能加速光学模拟
  • 批准号:
    10744626
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Bio-inspired photonics and surface engineering for sustainable energy materials
用于可持续能源材料的仿生光子学和表面工程
  • 批准号:
    2858904
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Novel group-IV nitride films by reactive sputtering as potential nonlinear optical materials in Si photonics
反应溅射新型 IV 族氮化物薄膜作为硅光子学中潜在的非线性光学材料
  • 批准号:
    23K03941
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Extreme photonics of quantum two-dimensional materials
量子二维材料的极限光子学
  • 批准号:
    RGPIN-2021-04286
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
CREATE-Materials for Advanced Photonics and Sensing
CREATE-先进光子学和传感材料
  • 批准号:
    511093-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative Research and Training Experience
Center of Excellence for High Throughput Proteogenomic Characterization
高通量蛋白质组表征卓越中心
  • 批准号:
    10643840
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Demonstration of valley spin devices by coupling 2D semiconductors to chiral photonic crystal nanocavities
通过将二维半导体耦合到手性光子晶体纳米腔来演示谷自旋器件
  • 批准号:
    22K14623
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Fast and efficient phase-change photonics using low-dimensional materials
合作研究:使用低维材料的快速高效的相变光子学
  • 批准号:
    2210168
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Center of Excellence for High Throughput Proteogenomic Characterization
高通量蛋白质组表征卓越中心
  • 批准号:
    10438235
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了